Przeskocz do treści

Delta mi!

  1. Teoria liczb Ogródek Gardnera

    Jaka to liczba?

    Na ogół matematycy nie są ulubionymi gośćmi na przyjęciach. Poprzedza nas reputacja nudziarzy, zanurzonych myślami w definicjach i twierdzeniach. A jednak możemy użyć naszej wiedzy, by oczarować zebranych magicznymi trikami, opartymi na własnościach matematycznych. Może przy okazji ktoś zainteresuje się matematyką?

  2. Planimetria Mała Delta

    Nadzwyczajne kafelki

    Każdy wie, jak ułożyć posadzkę, mając do dyspozycji trójkątne kafelki. Jeden ze sposobów jest taki: obok każdego trójkąta kładziemy trójkąt będący jego odbiciem względem środka jego boku. Którego? Każdego. Gdy będziemy tak konsekwentnie postępowali, możemy wyparkietować całą płaszczyznę.

  3. Geometrie nieeuklidesowe Mała Delta

    Czasoprzestrzeń

    czyli geometryczny odpowiednik szczególnej teorii względności, to dzieło Hermanna Minkowskiego (1864–1909), u którego zresztą Einstein studiował na politechnice w Zurichu. Pierwsza publikacja na ten temat ukazała się w 1909 roku i to tak nieszczęśliwie, że zmarły nagle Minkowski jej nie zobaczył.

  4. Gry, zagadki, paradoksy Wielkie granie

    O pewnej sztuczce

    Jakiś czas temu pokazano mi pewną sztuczkę karcianą. Pokazywały ją dwie osoby, Karol i Marcin. Najpierw Karol dostał pięć kart wylosowanych z talii. Nie pokazując ich nikomu, wybrał jedną z nich i ukrył przed wszystkimi.Pozostałe cztery ułoż w wybranej przez siebie kolejności i pokazał Marcinowi. Wtedy ten bezbłędnie odgadł, jaka jest piąta, ukryta karta.

  5. Planimetria Ogródek Gardnera

    Lehmus, Steiner, Gardner

    Powszechnie znany jest fakt, że w trójkącie równoramiennym dwie dwusieczne mają równe długości, podobnie jak dwie wysokości i dwie środkowe. Naturalne jest pytanie: a odwrotnie, czy równość dwóch ze wspomnianych wielkości gwarantuje równoramienność trójkąta?

  6. Teoria grafów

    Największa liczba na świecie

    Ludzie od niepamiętnych czasów prześcigali się w biciu rekordów w najprzeróżniejszych dziedzinach, od czysto sportowych (szybciej, wyżej, mocniej), poprzez cywilizacyjne (wyższe budowle, większe samoloty, szybsze komputery), aż po całkiem absurdalne, żeby nie powiedzieć głupie.

  7. Matematyka Ogródek Gardnera

    Dlaczego Martin Gardner był wielkim matematykiem, choć matematykiem nie był

    Martin Gardner urodził się 21 października 1914 r., a zmarł 22 maja 2010 r. Dwadzieścia pięć lat (1956–81) z jego długiego żywota zajęło redagowanie kącika matematycznego w Scientific American. I można by dopisać tu listę jego książek i artykułów. Ale to byłoby bez sensu. Bo o tym, co człowiek zrobił naprawdę, decyduje jedynie to, co w świecie po jego śmierci jest – dzięki niemu – inne, niż gdy się rodził.

  8. obrazek

    Wikipedia

    Grigorij Jakowlewicz Perelman

    Wikipedia

    Grigorij Jakowlewicz Perelman

    Topologia

    Hipoteza Poincarégo

    11 listopada 2002 roku Grigorij Jakowlewicz Perelman, geometra pracujący w Petersburskim Oddziale Instytutu Matematycznego im. Stiekłowa przy Fontance 27, udostępnił w Internecie 40-stronicową pracę pod tytułem „Formuła entropii dla potoku Ricciego i jej zastosowania geometryczne”. Czwartą stronę suchego i najeżonego fachowymi terminami wprowadzenia kończy zdanie:
    Wreszcie, w rozdziale 13, podajemy krótki szkic dowodu hipotezy geometryzacyjnej.

  9. Zastosowania matematyki

    Mrówki, czyli piękno metaheurystyk

    Jakie jest idealne rozwiązanie problemu algorytmicznego? Wydajne, proste, łatwe do przystosowania do innych zastosowań – i oczywiście dokładne. Często jednak nie potrzebujemy (lub nie możemy w rozsądnym czasie uzyskać) tej ostatniej cechy i jesteśmy skłonni zadowolić się dobrym oszacowaniem wyniku. W takich sytuacjach warto sięgnąć po metaheurystykę, czyli uniwersalny schemat przybliżonego rozwiązywania problemów optymalizacyjnych.

  10. Gry, zagadki, paradoksy Mała Delta

    Paradoksalna gra

    Większość znanych gier ma tę miłą własność, że kończy się po skończonej liczbie ruchów. Gdyby jednak gra polegała na tym, że gracze na przemian wskazują liczby naturalne, a wygrana na tym, że przeciwnik nie może już wskazać liczby większej, to taka gra musiałaby trwać nieskończenie długo (jeśli na chwilę zapomnimy o prawach biologii...).

  11. Algebra Mała Delta

    Można zacząć od banknotu

    Na ile sposobów można przykryć banknotem prostokąt o tych samych rozmiarach? xxx Każdy od razu zgadnie, że na cztery sposoby: do góry orłem, przy czym orzeł może być do dołu lub do góry nogami, i podobnie na dwa sposoby królem do góry (choć na banknocie nie widać jego nóg).

  12. Topologia Deltoid

    Zabawy z plasteliną

    Powiemy, że dwie bryły są plastelinowo równoważne (w skrócie równoważne), jeśli jedną z nich można otrzymać z drugiej za pomocą rozciągania, ściskania, wyginania itp., ale bez sklejania lub rozrywania.