Matematyka Klub 44 - Matematyka
Klub 44M - zadania XII 2020
Liga zadaniowa Wydziału Matematyki, Informatyki i Mechaniki, Wydziału Fizyki Uniwersytetu Warszawskiego i Redakcji Delty
Matematyka Klub 44 - Matematyka
Liga zadaniowa Wydziału Matematyki, Informatyki i Mechaniki, Wydziału Fizyki Uniwersytetu Warszawskiego i Redakcji Delty
Matematyka Zadania z myszką – matematyka
Jak co miesiąc, trzy ciekawe zadania z matematyki. Tym razem odrobina kombinatoryki...
Teoria liczb Kącik początkującego olimpijczyka
O zależnościach między i
Rzadko się zdarza, by matematyka pojawiała się w gazetach codziennych, bardzo rzadko ludzie niezajmujący się zawodowo matematyką o niej rozmawiają (takie rozmowy zdarzają się najczęściej w okresie egzaminów kończących jakiś etap nauczania). Początek roku 2020 był pod tym względem wyjątkowy, kilkoro znajomych (niematematyków) pytało nas, czy wiemy, jaką szczególną cechę ma liczba 2020 - nie wiedzieliśmy. Sprawdziliśmy...
- Hop, hop, jest tam kto? - krzyczy otoczona tłumem.
- Hop, hop, spójrz tutaj. - odpowiada który co prawda słyszy ale zupełnie jej nie widzi.
- Jakie "tutaj"? Przecież dookoła nie ma żywej duszy. - otoczona tłumem po raz kolejny usiłuje dostrzec pośród otaczającej pustki.
Punkty z rysunku obok, jako środki kolejnych boków wielokąta, kodują pewien obrazek. Czy potrafisz go odtworzyć? Spróbuj!
Całkiem często zdarza się w sporcie następująca sytuacja: kilka drużyn rozgrywa turniej metoda "każdy z każdym"...
Matematyka Klub 44 - Matematyka
Liga zadaniowa Wydziału Matematyki, Informatyki i Mechaniki, Wydziału Fizyki Uniwersytetu Warszawskiego i Redakcji Delty
Matematyka Zadania z myszką – matematyka
Jak co miesiąc, trzy ciekawe zadania z matematyki...
Teoria liczb Kącik początkującego olimpijczyka
O wygodnym narzędziu, przydatnym wszędzie tam, gdzie spotykamy rozkład na czynniki pierwsze
Każdej liczbie rzeczywistej możemy przypisać nieskończony ciąg cyfr jej rozwinięcia dziesiętnego. Jak wiadomo, jeżeli ciąg od pewnego miejsca się zapętla, to mamy do czynienia z liczbą wymierną. Inaczej rzecz ujmując, liczby wymierne mają okresowe rozwinięcie dziesiętne. Przyjmujemy tutaj, że tzw. rozwinięcie skończone jest rozwinięciem okresowym - od pewnego miejsca na każdej pozycji występuje wyłącznie cyfra 0.
Każdy, komu choć raz zdarzyło się grać na gitarze lub innym instrumencie strunowym, dobrze wie, że na wysokość dźwięku ma wpływ między innymi długość struny. Uderzając w struny zbudowane z tego samego materiału i o tych samych grubościach, lecz o różnych długościach, otrzymamy dwie różne częstotliwości drgań, a więc dwa dźwięki o różnych wysokościach. A jak to jest z instrumentami perkusyjnymi? Czy na podstawie brzmienia drgającej membrany bębenka można powiedzieć coś o jego kształcie?
Zostań na chwilę demonem zła. Chcesz zainfekować szachownicę o polach , które będziemy nazywać komórkami. W każdym kolejnym kroku zdrowa komórka zostaje zainfekowana, gdy graniczy co najmniej dwoma bokami z zainfekowanymi sąsiadami. Ten proces nazywamy 2-infekcją. Zainfekowana komórka pozostaje chora na zawsze.
Celem tego artykułu jest przybliżenie Czytelnikowi zagadnień i metod matematyki XVII wieku na przykładzie zadania trysekcji kąta i jego rozwiązania przez Kartezjusza. Przeplatają się tu metody geometryczne z algebraicznymi.
Gdy w parlamencie jedna partia ma większość, to ma całą władzę i może przegłosować praktycznie każdą ustawę. Co wydarzy się jednak, jeżeli ją straci, choćby jednym głosem? Jak wówczas wygląda rozkład sił w parlamencie? Czy dobrze odpowiada rozkładowi mandatów partii politycznych?
Jakiś czas temu koleżanki i koledzy z redakcji Delty poprosili mnie, żebym opisał, czym zajmuję się naukowo, i przedstawił pewien ciekawy wynik, który udało mi się wraz ze współpracownikami niedawno uzyskać. Pisząc ten tekst, postaram się przybliżyć tę właśnie dziedzinę, która mi osobiście wydaje się interesująca chyba dlatego, że rozważa problemy o bardzo prostym sformułowaniu geometrycznym, a mimo to jest w niej więcej znaków zapytania niż odpowiedzi. Badania często okazują się ciekawą kombinatoryką, popartą jednak zwykle geometrycznymi intuicjami. Wiele fundamentalnych pytań otwartych można sformułować bardzo szybko, jedno z nich przybliżę na końcu tego tekstu.
Za co Hillel Furstenberg (Uniwersytet Hebrajski w Jerozolimie) oraz Gregory Margulis (Uniwersytet Yale w New Haven) otrzymali tegoroczną nagrodę?
Matematyka Klub 44 - Matematyka
Liga zadaniowa Wydziału Matematyki, Informatyki i Mechaniki, Wydziału Fizyki Uniwersytetu Warszawskiego i Redakcji Delty
Matematyka Zadania z myszką – matematyka
Jak co miesiąc, trzy ciekawe zadania z matematyki...
Planimetria Kącik początkującego olimpijczyka
O prostej Eulera i okręgu dziewięciu punktów.
Drugie prawo Keplera, mówiące o tym, że w równych odstępach czasu promień wodzący planety, poprowadzony od Słońca, zakreśla równe pola (patrz ilustracja na następnej stronie), było w dużym stopniu ignorowane w astronomii przednewtonowskiej. Na przykład w dziele Astronomia Carolina, z którego korzystał Newton, jest ono wyraźnie nieobecne. Wynikało to z jego niewielkiej przydatności do obliczeń położenia planet na ich orbitach.
Lord Rayleigh, właściwie John William Strutt, 3. Baron Rayleigh (1842-1919) był laureatem Nagrody Nobla w dziedzinie fizyki w 1904 r. (badanie gęstości gazów i odkrycie, wspólnie z Sir W. Ramsayem, argonu). W 1877 roku w książce The Theory of Sound (vol. I, str. 123) opisał prawidłowość, którą można wyrazić następująco...
Wielomian jaki jest, każdy widzi. I każdy, kto widzi, wie również, że wielomiany miewają pierwiastki rzeczywiste (czyli miejsca zerowe), ale nie zawsze...
Wyobraźmy sobie, że wyborcy chcą wybrać parlament o rozmiarze w małym kraju, w którym nie zaistniała jeszcze koncepcja partii politycznych (w związku z czym muszą głosować bezpośrednio na kandydatów, a nie na partie polityczne), albo że pracownicy pewnej firmy lub organizacji chcą wybrać osób, które będą ich reprezentować w związkach zawodowych. Załóżmy, że każdy z wyborców głosuje, wskazując podzbiór kandydatów, których uważa za akceptowalnych: dla wyborcy taki podzbiór akceptowalnych kandydatów będziemy oznaczać przez Pokażemy, że wskazanie "sprawiedliwego" sposobu przeprowadzenia takich wyborów jest nieoczywiste.
Matematyka Klub 44 - Matematyka
Liga zadaniowa Wydziału Matematyki, Informatyki i Mechaniki, Wydziału Fizyki Uniwersytetu Warszawskiego i Redakcji Delty