Przeskocz do treści

Delta mi!

  1. Kryptologia A jednak się da!

    O cyfrowej gotówce (ASJD VI)

    Za co kochamy gotówkę? Chyba przede wszystkim za anonimowość transakcji. To znaczy: jeśli Aldona oraz Celina podejmą z banku po banknocie stuzłotowym; następnie Aldona wyda te pieniądze w sklepiku Bogumiła, a Celina u Dobromira; po czym zarówno Bogumił, jak i Dobromir zdeponują zarobione pieniądze z powrotem w banku, to oczywiście bank w żaden sposób nie będzie w stanie stwierdzić, czy klientką Bogumiła była Aldona, czy też może Celina.

  2. Teoria Mnogości Mała Delta

    Jak policzyć nieskończone?

    Kontynuując naszą przygodę z nieskończonością, spróbujmy wypracować podstawowe narzędzia do jej badania. Przyda nam się w tym celu pewna analogia pomiędzy zbiorami nieskończonymi a tymi skończonymi. Wyobraźmy sobie dwa skończone zbiory osób. Powiedzmy, że elementami pierwszego z nich są: Aldona, Balbina, Cezaria oraz Delfina, a elementami drugiego: Abelard, Baldwin, Cyryl oraz Dezyderiusz. Od razu zauważamy, że te zbiory mają tyle samo elementów. Jak dojść do tego wniosku? Można policzyć elementy w każdym ze zbiorów i w obu przypadkach wyjdzie cztery. A co by było, gdybyśmy nie umieli liczyć do czterech? Czy jest inna metoda pozwalająca na stwierdzenie, że te zbiory mają tyle samo elementów?

  3. Grawitacja i Wszechświat

    Geometria na wirującej karuzeli

    Ile wynosi suma wewnętrznych kątów w trójkącie? Kwestia ta nurtowała słynnego matematyka Carla Gaussa na tyle, że zadał sobie trud wspinania się na górskie szczyty. Jak wiadomo szczyty są po to, by je zdobywać, jednak błędem alpinistów jest to, że tę piękną metaforę traktują dosłownie. Gauss jednak nie był alpinistą. Chodził po górach nie po to, by "zdobywać szczyty", lecz po to, by przy użyciu urządzeń geodezyjnych mierzyć sumę kątów w gigantycznych trójkątach utworzonych z trzech odległych alpejskich wierzchołków.

  4. Algebra Co to jest?

    Grupa

    Ustalmy zbiór X; np. X = {1;2; :::;2019}: Niech |S X oznacza zbiór funkcji odwracalnych z X w X: Funkcje z |SX można składać i odwracać, nie wychodząc poza SX: W zbiorze SX istnieje też funkcja identycznościowa. Tytułowe grupy są abstrakcyjnym sposobem wyrażenia powyższych własności zbioru S : X

  5. Algebra Co to jest?

    Pierścień

    Jednym z fundamentalnych pojęciem algebraicznych są pierścienie. Zostały one wprowadzone pod koniec XIX wieku z nadzieją na pomoc w udowodnieniu Wielkiego Twierdzenia Fermata. Jak wiadomo, zostało to uczynione dopiero w 1995 roku, więc przez długi czas nadzieja ta była płonna...

  6. Topologia Co to jest?

    Zbiór domknięty i zbiór otwarty

    Przypuśćmy, że (X; æ) jest przestrzenią metryczną, czyli zbiorem |X; w którym możemy mierzyć odległość między punktami tego zbioru. W przestrzeni metrycznej możemy zdefiniować pojęcie zbioru otwartego i domkniętego. Zacznijmy od przykładu podzbiorów płaszczyzny ze zwykłą, szkolną metryką euklidesową.

  7. Topologia Co to jest?

    Homeomorfizm

    Homeomorfizmy to przekształcenia zachowujące różne własności zbiorów (obiektów geometrycznych). Znaczy to, że pewne cechy obiektu są zachowywane przy "ściskaniu" lub "rozciąganiu", bez sklejania lub rozcinania, dziurawienia itp.

  8. Analiza Co to jest?

    Zbieżność

    Zbieżność to jedno z najważniejszych pojęć analizy matematycznej, odnoszące się najczęściej do ciągów i funkcji (oraz rozmaitych obiektów matematycznych skonstruowanych przy ich użyciu, np. szeregów czy ciągów funkcyjnych). Tu zajmiemy się zbieżnością ciągów liczbowych.

  9. Matematyka Co to jest?

    Relacje

    Mając dane dwa zbiory A i |B; relacją zdefiniowaną pomiędzy tymi dwoma zbiorami matematycy nazywają po prostu podzbiór zbioru wszystkich par elementów, w których pierwszy jest ze zbioru A; a drugi ze zbioru |B: Inaczej mówiąc, element ze zbioru A i element ze zbioru B mogą być w danej relacji lub w niej nie być.

  10. Teoria Mnogości Co to jest?

    Zbiór

    Zbiór to najbardziej podstawowe pojęcie matematyki. Ze zbiorami mamy do czynienia właściwie we wszystkich dyscyplinach matematycznych. Choć każdy Czytelnik na pewno intuicyjnie rozumie słowo "zbiór" (np. jako kolekcję lub zestaw utworzony z pewnego rodzaju elementów), to pojęcie to nie ma formalnej definicji.

  11. Zastosowania matematyki

    Trzy spojrzenia na teorię gier

    W dniach 9-21 września 2018 r. odbyła się trzecia edycja międzynarodowego obozu Maths Beyond Limits . 60 uczestników z Białorusi, Belgii, Czech, Danii, Estonii, Norwegii, Polski, Rumunii, Słowacji, Szwecji, Ukrainy i Węgier wzięło udział w warsztatach matematycznych prowadzonych przez studentów i pracowników naukowych polskich i zagranicznych uczelni. Mieli oni także okazję do zaprezentowania własnych referatów oraz do uczestnictwa w ogólnorozwojowych zajęciach wieczornych. Ponadto, w czasie obozu odbyły się: mecz matematyczny, zawody Relays (oparte na konkursie Náboj), Puzzle Hunt, a także zajęcia sportowe i integracyjne.

  12. Matematyka Mała Delta

    Problemy starożytnych

    Jednym z naturalnych skojarzeń z nieskończonością są duże, bardzo duże liczby. Tak bardzo, że trudno je sobie wyobrazić, a intuicja nie pomaga. Możemy jednak o nich pomyśleć. Czytając doniesienia o wydatkach z budżetu państwa lub tym bardziej o światowej gospodarce, łatwo pogubić się w milionach, miliardach i bilionach. I chociaż wiemy, że w bilionie  12 |1000000000000 = 10 mieści się aż milion milionów, mało kto jest w stanie to sobie wyobrazić. Wszystkie te liczby wpadają w tę samą kategorię - liczb dużych na tyle, że nie znajdujemy dla nich zastosowania w zwyczajnym codziennym życiu.

  13. Kryptologia A jednak się da!

    Protokół Yao (AJSD V)

    Jedną z drobnych przyjemności w życiu milionera jest porównywanie swojego bogactwa z bogactwem innych milionerów. Czasem nie jest to trywialne zadanie, gdyż afiszowanie się ze stanem swojego konta (nawet przybliżonym) mogłoby zostać uznane za naruszenie krezusowej etykiety. Istnieje co prawda szeroki wachlarz subtelnych wskaźników, w rodzaju rozmiaru posiadłości czy liczby luksusowych aut, jednak te bywają bardzo mylące. Czy jest możliwa wymiana informacji między dwoma bogaczami w taki sposób, by każdy z nich dowiedział się, który z nich jest bogatszy, i byłaby to jedyna informacja o stanie posiadania rozmówcy?