Przeskocz do treści

Delta mi!

  1. Geometria

    Czy math jest constans?

    Jedną z najistotniejszych wielkości w matematyce jest math której poświęcono wiele ścisłych prac i filozoficznych rozważań od starożytności (jeszcze zanim została nazwana swoim obecnym imieniem) do czasów współczesnych. Co pewien czas można znaleźć informacje o kolejnych rekordach w wyznaczaniu coraz dłuższego jej rozwinięcia dziesiętnego. Przeglądając literaturę, portale o tematyce matematycznej bądź podręczniki szkolne, można także spotkać się z różnymi sposobami definiowania liczby math

  2. obrazek

    Planimetria Deltoid

    Sumy nieskończone

    Niektóre sumy nieskończone można zilustrować, tworząc nieskończony rysunek, którego pewna część jest podobna do całości. Na przykład na rysunku taką częścią jest jego prawa górna ćwiartka, a także prawa górna ćwiartka tej ćwiartki itd.

  3. obrazek

    Geometria

    Fraktalny świat papierowej tasiemki

    Weźmy długi pasek papieru i złóżmy go na pół. Następnie, nie rozkładając, óżmy go w tę samą stronę jeszcze dwa razy. W końcu, rozprostujmy złożenia tak, by papier zginał się pod kątem math Otrzymamy obiekt jak na rysunku 1.

  4. obrazek

    Teoria miary

    Jak wygląda zbiór math-wymiarowy, czyli o wymiarze fraktali

    Pod koniec XIX wieku w matematyce zaczęły pojawiać się niespotykane wcześniej obiekty geometryczne, charakteryzujące się skomplikowanym kształtem i zjawiskiem „samopodobieństwa” (podobieństwa dowolnie małych fragmentów do całości zbioru). Tego rodzaju zbiory nazywamy dziś fraktalami. Aby lepiej opisać geometrię takich obiektów, wykorzystuje się różne odmiany pojęcia wymiaru, zwane czasami wymiarami fraktalnymi.

  5. obrazek

    Solkoll / wikipedia

    Zastosowania matematyki

    Układy iterowanych przekształceń

    Kto coś słyszał o fraktalach, zwykle potrafi wymienić dwie ich cechy charakterystyczne: figury te mają skomplikowany kształt (bardziej wtajemniczeni mówią o ułamkowym wymiarze; kto chce być bardziej wtajemniczony, przeczyta artykuł Krzysztofa Barańskiego na stronie 4) i wykazują samopodobieństwo (bardziej wtajemniczeni umieją powiedzieć, jakiego rodzaju: geometryczne, afiniczne, rzutowe, a może stochastyczne). Mówiąc ogólnie, cechy te ma również wiele obiektów spotykanych w świecie, a to otwiera szerokie pole do zastosowań fraktali w grafice komputerowej. Jej celem jest przecież naśladowanie rzeczywistości.

  6. obrazek

    Obracający się sympleks czterowymiarowy

    Animacja

    Topologia

    Kilka słów o wymiarze

    Ideą teorii wymiaru jest przyporządkowanie przestrzeni math  liczby całkowitej (wymiaru math ) tak, by było to zgodne z intuicyjnym znaczeniem tego słowa. Dla uproszczenia skoncentrujemy się na podzbiorach przestrzeni Hilberta, która zawiera, między innymi, przestrzenie euklidesowe wszystkich wymiarów.

  7. Rachunek prawdopodobieństwa Omega

    Wół, lis i konik polny (II)

    W poprzednim numerze opisaliśmy prostą grę, w której trzeba było dokonać dwukrotnie właściwego wyboru jednej z dwóch możliwości, by zmaksymalizować średnią wygraną. Krótko mówiąc, był to dynamiczny problem decyzyjny. Zademonstrowaliśmy też trzy z wielu możliwych strategii, w tym optymalną (oczywiście lisa).

  8. obrazek

    wikipedia

    John Forbes Nash, Jr.

    wikipedia

    John Forbes Nash, Jr.

    Zastosowania matematyki Nagrody Nobla

    Polowanie na jelenia i równowagi Nasha

    W 1762 roku Jean Jacques Rousseau napisał: „Polujący na jelenia myśliwi są w pełni świadomi, że aby go upolować, muszą być lojalni wobec siebie i pozostać na swoich posterunkach. Jeżeli jednak zając przebiegnie w pobliżu jednego z nich, nie ma wątpliwości, że myśliwy ten ruszy za pewną zdobyczą, doprowadzając do fiaska polowanie na jelenia.” Przetłumaczmy to na język współczesnej teorii gier...

  9. obrazek

    Gry, zagadki, paradoksy Wielkie granie

    Gra hex i punkty stałe

    Hex jest jedną z najprostszych i jednocześnie jedną z najciekawszych z matematycznego punktu widzenia gier planszowych. Rozgrywka heksa jest prowadzona na romboidalnej planszy złożonej z sześciokątnych pól. Najbardziej typowe są plansze math jak na rysunku, ale można grać na dowolnie dużej planszy.

  10. Planimetria

    Sprawa niezbyt pedagogiczna

    Richard Feynman, laureat Nagrody Nobla z fizyki, miał bardzo krytyczny stosunek do rozważań czysto teoretycznych. Wspomina o tym Kai Lai Chung, wybitny probabilista amerykański, w książce Green, Brown and Probability.

  11. Stereometria Kącik przestrzenny

    Kąty płaskie w przestrzeni

    Tym razem opowiemy o kątach w przestrzeni, a dokładniej o tym, jak rozwiązywać zadania zawierające nierówności miar kątów w przestrzeni. W zadaniach pojawiają się dwa typy kątów – płaskie i dwuścienne. Ten odcinek poświęcimy kątom płaskim, a o dwuściennych opowiemy następnym razem.

  12. obrazek

    wikipedia

    Ambasodorowie, Hans Holbein Młodszy (1498–1543)

    wikipedia

    Ambasodorowie, Hans Holbein Młodszy (1498–1543)

    Planimetria

    Sztuka anamorficzna

    Obrazem anamorficznym nazywamy obraz powstały przez celowe zniekształcenie jego proporcji w taki sposób, aby jego poprawny odczyt był możliwy przez popatrzenie na niego z ustalonej perspektywy lub odbicie go w odpowiednim zwierciadle.