Przeskocz do treści

Delta mi!

  1. obrazek

    Zastosowania matematyki Deltoid

    Ukryte obrazy

    Kryptografia wizualna to metoda komputerowego szyfrowania obrazów, w której do rozszyfrowania wystarczy... popatrzeć. Konkretniej, z obrazu, który chcemy zaszyfrować („obrazem” może być też napisany na kartce tekst), tworzymy dwa „pstrokate” obrazy, z których nic nie można odczytać.

  2. obrazek

    Kryptologia

    Ukryte obrazy

    Kryptografia wizualna to metoda komputerowego szyfrowania obrazów, w której do rozszyfrowania wystarczy... popatrzeć. Konkretniej, z obrazu, który chcemy zaszyfrować ("obrazem" może być też napisany na kartce tekst), tworzymy dwa "pstrokate" obrazy, z których nic nie można odczytać.

  3. Geometrie nieeuklidesowe

    W rozumowaniach był błąd

    W poprzednim numerze Delty przedstawiłem trzy dowody V postulatu Euklidesa. Dla wszystkich Czytelników było jasne, że zawierają one błędy. Fakt, że mimo to każdy z nich przez pewien czas był uznany za poprawny, wskazuje na ogromny kłopot, jakim dla myślicieli – już niekoniecznie matematyków – było przyjęcie do wiadomości, że mogą istnieć dwie wykluczające się, ale poprawne, a więc w szczególności niesprzeczne teorie opisujące ten sam obiekt, w tym przypadku przestrzeń. A przecież przestrzeń, w której „odbywa się” Wszechświat, jest jedna.

  4. Matematyka

    LXIII Olimpiada Matematyczna

    W zawodach stopnia pierwszego wzięło udział 1409 uczniów, do zawodów stopnia drugiego zakwalifikowano 622 uczniów, a do zawodów stopnia trzeciego – 104 uczniów. Komitet Główny Olimpiady Matematycznej na posiedzeniu w dniu 20 kwietnia br. postanowił przyznać 24 osobom tytuł laureata oraz nagrody pierwszego, drugiego, trzeciego i czwartego stopnia, zaś 3 osobom – wyróżnienie.

  5. obrazek

    Stereometria Lekcja rysunku

    Lekcja 1 - Stella octangula

    Wydaje się, że w czasach szybkich komputerów, programów graficznych i innych gadżetów nie ma sensu zajmowanie się rysunkiem odręcznym. Równie dobrze jednak można by zrezygnować z nauki pisania i tabliczki mnożenia – są przecież odpowiednie edytory i kalkulatory. Zdarza się jednak, że rozwiązując jakieś zadanie, dobrze byłoby podeprzeć naszą wyobraźnię właśnie rysunkiem, a nie ma pod ręką supernowoczesnych narzędzi.

  6. Matematyka Ogródek Gardnera

    Kilka zadań, o których...

    Na IV Konferencji Stowarzyszenia Edukacji Matematycznej miałem przyjemność mówić o matematycznych zadaniach „o których nie wiedzieliście, że o nich nie wiedzieliście”. Sformułowanie to nawiązuje do niedawno przełożonej na język polski książki Johna Barrowa 100 essential things you didn’t know you didn’t know...

  7. Stereometria

    Kwadrat, którego nie ma

    Przemieszczając się na płaszczyźnie za pomocą ruchów „do przodu”, „do tyłu”, „w lewo” i „w prawo”, możemy w szczególności narysować kwadrat. Czy analogiczna sytuacja rozważana na zakrzywionej powierzchni zawsze pozwala na wygenerowanie kwadratu przez zakreślaną trajektorię? Rozważmy sferę, którą często wykorzystuje się w globalnym modelowaniu powierzchni Ziemi.

  8. Planimetria

    Dowody V postulatu Euklidesa

    Oczywiście, V postulatu Euklidesa nie da się dowieść na podstawie poprzednich czterech. Niemniej jednak praktycznie każdy znaczący matematyk od V do XIX wieku taki dowód przeprowadził i dopiero jego koledzy wskazywali, w którym miejscu rozumowania użył przesłanki z czterech początkowych postulatów niewynikającej...

  9. Planimetria Konkurs prac uczniowskich

    Japońska geometria świątynna

    Połączenie matematyki z religią może wydawać się nam, Europejczykom, dość zaskakujące. W Japonii jednak przez bardzo długi czas nie było niczym niezwykłym. Zjawisko to zostało zapoczątkowane w XVII wieku, kiedy władcy tego kraju podjęli decyzję o zamknięciu portów i odcięciu Japonii od reszty świata, szczególnie od Europy Zachodniej, a trwało do XIX wieku.

  10. Kryptologia

    Kocha, lubi, szyfruje...

    W fizyce szkolnej nieustannie przewijającym się motywem są dwa znane miasta: miasto A oraz miasto B. W kryptografii takimi gwiazdami są Alicja i Bob, którzy ciągle się komunikują, uwierzytelniają, a zwykle przeszkadza im w tym złowroga Ewa.

  11. obrazek

    Planimetria

    Żuraw matematyczny

    Od dwóch lat Fundacja Matematyków Wrocławskich oraz Instytut Matematyczny Uniwersytetu Wrocławskiego organizują konkurs matematycznego origami Żuraw”. Mogą w nim startować uczniowie ze wszystkich typów szkół, a także dorośli amatorzy i profesjonalni matematycy. W odróżnieniu od innych konkursów origami w tym nie wystarczą zdolności manualne. W eliminacjach zawodnicy wykonują model matematyczny (płaski lub przestrzenny) w technice origami, natomiast w finale jest na odwrót – rozwiązują problemy dotyczące sztuki origami, używając technik matematycznych.

  12. Planimetria Deltoid

    Twierdzenie Brianchona

    Poprzedni deltoid poświęcony był osiom potęgowym, między innymi twierdzeniu, które w skrócie brzmi tak: osie potęgowe trzech okręgów przecinają się w jednym punkcie. Ciekawym jego zastosowaniem jest dowód twierdzenia Brianchona.

  13. Planimetria Stowarzyszenie na rzecz Edukacji Matematycznej

    Najciekawsze zadanie z VI OMG

    7 stycznia 2012 roku około 1400 uczniów wzięło udział w drugim etapie VI Olimpiady Matematycznej Gimnazjalistów. Najciekawszym i jednocześnie najtrudniejszym zadaniem okazało się zadanie z planimetrii oznaczone numerem 5. Rozwiązało je niewielu uczniów, przy czym żaden z nich nie rozważył wszystkich możliwych konfiguracji. Poniżej postaramy się zadanie to dokładnie zanalizować.