Analiza, Dedekind i Cantor
Sztuka w trzech aktach z prologiem i epilogiem...
Prolog
Rzecz dotyczy pytania: na ile Dedekind jest potrzebny Analizie?
Akt I.
Zawiązanie akcji, czyli co to jest Analiza i co ma z tym wspólnego Dedekind; pojawienie się Cantora.
Ciało liczb rzeczywistych, które poznajemy (a raczej powinniśmy poznać) w szkole średniej, jest opisane pewnym układem aksjomatów. Aksjomaty te można podzielić na dwie klasy; pierwszą klasę stanowią wszystkie aksjomaty z wyjątkiem jednego - tzw. Aksjomatu Dedekinda. Aksjomaty pierwszej klasy mają charakter arytmetyczno-porządkowy. Mówią one m.in., że działania arytmetyczne na liczbach rzeczywistych są łączne, przemienne, że odejmowanie jest wykonalne zawsze, a dzielenie - tylko przez liczby różne od 0; że mnożenie jest rozdzielne względem dodawania; że dodawanie i mnożenie przez liczby dodatnie zachowują porządek (tzn. nierówności) itd. Cechą wspólną tych aksjomatów jest to, że mówią one o własnościach liczb rzeczywistych. Zupełnie inny charakter ma Aksjomat Dedekinda. Opisuje on pewną własność podzbiorów liczb rzeczywistych.
Mianowicie:
Aksjomat (Dedekinda). Każdy ograniczony podzbiór liczb rzeczywistych ma kres górny.
Nieco trudniej jest powiedzieć, co to jest Analiza. Najlepsze określenie, jakie potrafię wymyślić, jest następujące: Analiza jest to zbiór twierdzeń, dających się wyprowadzić z aksjomatów ciała liczb rzeczywistych, opisujących pewne własności funkcji o wartościach rzeczywistych określonych na podzbiorach liczb rzeczywistych.
Najłatwiej wyjaśnić, o jakie własności tutaj chodzi, na przykładzie dwóch podstawowych twierdzeń Analizy.
Twierdzenie 1 (Darboux). Jeżeli funkcja ciągła przyjmuje na końcach przedziału wartości różnych znaków, to wewnątrz przedziału istnieje taka liczba że
Twierdzenie 2 (Lagrange). Jeżeli funkcja ciągła jest różniczkowalna wewnątrz przedziału to wewnątrz tego przedziału istnieje taki punkt że
Zanotujmy jeszcze jedno twierdzenie Analizy.
Twierdzenie 3 (Cantor). Ciało liczb rzeczywistych nie jest przeliczalne.
Akt II.
Czy wszystkie liczby rzeczywiste są rzeczywiście potrzebne, czyli tragiczny koniec Analizy.
Żeby zobaczyć, co się stanie z Analizą, kiedy zabraknie Aksjomatu Dedekinda, weźmy dowolne mniejsze podciało ciała liczb rzeczywistych, tzn. taki zbiór liczb, w którym spełnione są wszystkie aksjomaty należące do pierwszej klasy. Ponieważ więc istnieje Niech i będą takimi liczbami rzeczywistymi należącymi do że (takie liczby muszą istnieć!). Niech jest zbiorem ograniczonym. W ciele nie jest spełniony Aksjomat Dedekinda, gdyż z tego, że i wynika, iż w ciele zbiór nie ma kresu górnego. Gdyby Twierdzenia Analizy nie zależały od Aksjomatu Dedekinda, tzn. dawały się wyprowadzić z aksjomatów należących do pierwszej klasy, to ponieważ spełnia wszystkie aksjomaty należące do pierwszej klasy, byłyby one prawdziwe dla funkcji określonych na podzbiorach o wartościach w Tak jednak nie jest. Np. określmy funkcję gdzie oznacza odcinek domknięty w tzn. wzorem
Łatwo można zauważyć, że spełnia ona założenia twierdzeń 1 i 2, natomiast tezy tych twierdzeń nie zachodzą. Z definicji wynika, że dla każdego także teza twierdzenia 2 nie może zachodzić, gdyż dla każdego i
Ponieważ cała nasza konstrukcja wynikła z faktu, że istnieje z rozważań powyższych można wyciągnąć
Z drugiej strony można pokazać, że rezygnacja z Aksjomatu Dedekinda spowoduje nie tylko "zawalenie się" twierdzeń 1 i 2. Rezygnacja taka spowoduje tragiczny koniec Analizy - zawali się w niej praktycznie wszystko. Zostaną tylko nieciekawe ruiny.
Akt III.
Cudowne ocalenie Analizy, czyli liczby i funkcje definiowalne.
Całe nieszczęście wyniknęło z tego, że chcieliśmy z jednej strony zmniejszyć zbiór liczb w Analizie, a z drugiej strony - pozostawić zbiór funkcji praktycznie bez zmian. Zawalenia się Analizy można uniknąć, jeżeli odpowiedniemu zmniejszeniu zbioru liczb towarzyszy odpowiednie zmniejszenie zbioru funkcji. Oto jeden z takich sposobów. Niech będzie podzbiorem liczb rzeczywistych, złożonym z liczb definiowalnych za pomocą działań arytmetycznych, liczb naturalnych, zbioru liczb naturalnych, indukcji i kresu górnego (tzn. z liczb, które można "konkretnie" zdefiniować za pomocą tych pojęć).
Łatwo można wykazać, że jest podciałem ciała liczb rzeczywistych. Np. żeby wykazać, że jeżeli to wystarczy zauważyć, iż liczbę można zdefiniować następująco:
" jest jedyną liczbą, taką że gdzie jest zdefiniowane przez..."
Ponieważ zbiór wszystkich "konkretnych" definicji jest przeliczalny, zatem ciało jest przeliczalne; a więc jest istotnie mniejsze niż ciało liczb rzeczywistych (por. twierdzenie 3).
Umówmy się, że przez podzbiór ciała będziemy rozumieli podzbiór definiowalny za pomocą pojęcia "liczby definiowalne" i pojęć wymienionych wyżej. Można udowodnić, że dla ciała i jego podzbiorów (definiowalnych) spełniony jest Aksjomat Dedekinda, tj. każdy ograniczony podzbiór definiowalny w ma kres górny należący do
Wniosek 2. Ciało spełnia wszystkie aksjomaty ciała liczb rzeczywistych (przy interpretacji: podzbiór = podzbiór definiowalny).
Rozważmy wszystkie funkcje definiowalne z w
Dowód. Jeżeli jest liczbą definiowalną, a jest funkcją definiowalną, to definicja wygląda następująco:
" jest jedyną liczbą rzeczywistą, taką że gdzie jest zdefiniowane przez..., a jest zdefiniowane przez...".
Zatem jeżeli ograniczymy się do liczb, podzbiorów i funkcji definiowalnych, to w otrzymanym modelu spełnione będą wszystkie aksjomaty ciała liczb rzeczywistych, a więc prawdziwe będą wszystkie twierdzenia Analizy (bo można je z tych aksjomatów wyprowadzić). Nazwijmy sobie tę teorię Analizą Definiowalną.
Wniosek 4. W obrębie Analizy Definiowalnej wszystkie twierdzenia Analizy są prawdziwe przy następującej interpretacji:
W szczególności, w obrębie Analizy Definiowalnej prawdziwe jest twierdzenie 3 (porównaj definicję zbioru przeliczalnego). To znaczy, że zachodzi
Epilog
Zaskakujące konsekwencje, czyli jak przeliczalność zbioru (i nie tylko ona) może zależeć od naszego obrazu świata.
Na początku aktu III stwierdziliśmy, że ciało jest przeliczalne, na końcu zaś tego samego aktu podaliśmy twierdzenie Cantora mówiące, że ciało nie jest przeliczalne. Sprzeczność! Chcieliśmy ocalić Analizę, a w efekcie utopiliśmy Matematykę. Sprawa domaga się wyjaśnienia!
Wyjaśnienie takie jest stosunkowo proste. To, czy pewien zbiór jest przeliczalny, czy nie, nie jest własnością absolutną tego zbioru. Może to w pewnych przypadkach zależeć od przyjętego obrazu (modelu) "świata". Mianowicie, w naszym przykładzie
- w przypadku Analizy model zawierał dużo elementów i dużo funkcji - a więc nic dziwnego, że wśród nich znalazła się funkcja odwzorowująca zbiór liczb naturalnych na zbiór co spowodowało, że zbiór z punktu widzenia Analizy jest przeliczalny (porównaj definicję zbioru przeliczalnego),
- w przypadku Analizy Definiowalnej model zawierał mniej elementów i mniej funkcji; twierdzenie Cantora dla Analizy Definiowalnej orzeka, iż tych funkcji jest tak mało, że nie znajduje się wśród nich żadna funkcja odwzorowująca liczby naturalne na
Ponieważ dodawanie jest "efektywnie" wykonalne, więc w każdym modelu analizy musi się równać Natomiast przeliczalność zbioru nie jest efektywnie sprawdzalna. To znaczy - nie istnieje skończony algorytm pozwalający rozstrzygnąć, czy dany zbiór jest przeliczalny, czy nie. Zdarza się, że w przypadku takich nieefektywnych pojęć odpowiedź na pytanie zależy od przyjętego modelu świata. I tak właśnie jest z przeliczalnością zbioru Podobnie nieefektywnym postulatem jest używany w Geometrii:
Aksjomat (Archimedesa). Odkładając wielokrotnie na prostej dany odcinek możemy uzyskać odcinek większy od danego odcinka
I w tym przypadku odpowiedź na pytanie, czy tak jest naprawdę, zależy od przyjętego modelu Geometrii.