Przeskocz do treści

Delta mi!

  1. Planimetria Deltoid

    Czarno-białe mapy

    Słynne twierdzenie orzeka, że każdą mapę da się pomalować najwyżej czterema barwami. Oczywiście, zawsze należy malować tak, by sąsiadujące ze sobą państwa miały różne kolory. Są jednak mapy, dla których wystarczy mniej barw.

  2. Planimetria

    Pewne uogólnienie prostej Eulera

    Panuje przekonanie, że w niemodnej obecnie dziedzinie geometrii klasycznej wszystko jest znane i nie pozostało nic do odkrycia. Kłam temu stwierdzeniu zadaje dość ciekawe i (jeszcze) mało znane twierdzenie, które przedstawiamy w niniejszym artykule. Warto zaznaczyć, że środki, jakie posłużyły nam do dowodu, są czysto geometryczne i nie korzystają z narzędzi analitycznych. Aby ułatwić jego zrozumienie, przedstawiamy najpierw pewne pojęcia, definicje i bardziej znane fakty powiązane z tym zagadnieniem.

  3. Stereometria

    Stożki i walce

    Od Archimedesa wiemy, że zdaniem Demokryta stożek stanowi trzecią część walca, ale pierwszy udowodnił to Eudoksos. Znamy ten rezultat z XII Księgi Elementów Euklidesa (Stwierdzenie 10)...

  4. Stereometria Deltoid

    Budowle z klocków

    Wiele zadań przestrzennych łatwiej rozwiązać, gdy najpierw zbada się analogiczny problem płaski. Taki dwuwymiarowy odpowiednik czasem sam się narzuca, a czasem jego sformułowanie wymaga pewnej pomysłowości. Poniżej prezentujemy przykłady zadań o przestrzennych klockach, na różne sposoby "spłaszczane".

  5. Stereometria

    Czy Ziemia jest płaska? A może jednak?

    W artykule Czy Ziemia jest płaska (Delta 4/2016) pokazaliśmy, że sfera (będąca uproszczonym modelem powierzchni Ziemi) nie jest płaska, to znaczy nie daje się podzielić na fragmenty, z których każdy byłby izometryczny z pewnym fragmentem płaszczyzny. Przypomnijmy, że ta cecha odróżnia sferę od powierzchni bocznych walca i stożka. Pójdźmy więc dalej - czy jest możliwa taka gładka deformacja sfery, aby uzyskać powierzchnię płaską?

  6. obrazek

    Euklides
    (ok.365 p.n.e.-ok. 300 p.n.e.)

    Euklides
    (ok.365 p.n.e.-ok. 300 p.n.e.)

    Geometrie nieeuklidesowe

    Inne światy, inne geometrie

    Geometrię szkolną nazywamy euklidesową, bo jej pierwsze aksjomaty zostały podane w Elementach Euklidesa (około -300). Wśród nich wyróżniał się aksjomat mówiący o tym, że na płaszczyźnie przez punkt poza prostą można poprowadzić tylko jedną prostą z nią rozłączną. Zasugerowana przez Proklosa (V wiek) możliwość wyprowadzenia tego aksjomatu z pozostałych przez następne 1300 lat drażniła ambicje praktycznie wszystkich matematyków, co owocowało dowodami błędnymi (bo opartymi na przesłankach, które same nie miały dowodów).

  7. Stereometria Drobiazgi

    Brzydka prawda

    Wielościan wypukły, którego ściany są jednakowymi wielokątami foremnymi, może mieć ściany trójkątne, czworokątne lub pięciokątne. Ostatnie dwa przypadki realizują się tylko w postaci sześcianu i dwunastościanu...

  8. Planimetria Mała Delta

    Inwersja w różnych metrykach

    Wiele przedmiotów zawdzięcza swe istnienie kompozycji dwóch pozornie niewspółistniejących ze sobą idei. Louis Braille połączył koncepcję zapisu graficznego, czyli odczytywanego za pomocą wzroku, ze sposobem zapisywania wiadomości zaprojektowanym dla ludzi niewidomych, którzy korzystają ze zmysłu dotyku. W rezultacie powstał alfabet dla niewidomych, który można odczytać także za pomocą wzroku. Podobnie narodził się pomysł na zbadanie obrazów inwersyjnych w różnych metrykach...

  9. obrazek

    Geometria Mała Delta

    Tam, gdzie matematyka, sztuka i magia łączą swoje siły, czyli słów kilka o origami

    Mówi się, że origami powstało dwa tysiące lat temu wraz z wynalezieniem papieru. W tym kontekście wydaje się zaskakujące, że początek odkrywania matematyki stojącej za składaniem papieru przypada dopiero na lata osiemdziesiąte zeszłego stulecia. Dziś gałąź nauki zwana origami obliczeniowe (ang. computational origami) rozwija się bardzo prężnie.

  10. Geometrie nieeuklidesowe Mała Delta

    Geometria dziewięciu punktów

    Czysty zeszyt, cyrkiel, linijka, kątomierz, liniuszek - standardowy szkolny ekwipunek lekcji geometrii. Ale istnieją również inne geometrie, w których do konstrukcji figur nie jest potrzebne żadne oprzyrządowanie. Jedną z nich jest geometria dziewięciu punktów, gdzie bez linijki czy cyrkla można "konstruować" całkiem dokładnie koła, trójkąty i inne figury.

  11. obrazek

    Planimetria Deltoid

    Boki trójkąta

    Jeśli w nierówności, którą chcemy uzasadnić, występują długości boków |a;b;c pewnego trójkąta, często przydaje się podstawienie Raviego: |a = y + z; b = z + x; c = x + y ; gdzie x;y ;z > 0: Takie liczby |x;y;z zawsze istnieją, są to bowiem długości odcinków stycznych do okręgu wpisanego w trójkąt.

  12. Planimetria

    Kwadraty

    Euklides w Elementach pisał: "... kwadrat jest tym, co równoboczne i prostokątne...". Oto kilka niebanalnych obserwacji, w których kwadrat jest jednym z bohaterów.

  13. Planimetria Deltoid

    W jednym punkcie

    W wielu zadaniach należy uzasadnić, że pewne trzy proste przecinają się w jednym punkcie. Często można wykazać, że wszystkie one są symetralnymi, dwusiecznymi, wysokościami albo środkowymi pewnego trójkąta, co oczywiście kończy dowód.

  14. obrazek

    Geometria Mała Delta

    Z żabami przez symetrię

    Chyba każdy patrzył kiedyś w kalejdoskop - prostokątne lustra odbijające różnobarwne wzory powstałe z przesypujących się koralików. Nie znam nikogo, kto mając w ręku owo urządzenie, byłby w stanie powstrzymać się przed choćby najmniejszym obróceniem nim i zerknięciem przez małe oczko na otrzymany efekt. A gdyby odwrócić sytuację i zbadać, jak zmieni się obraz, gdy zamiast koralikami poruszymy lustrami znajdującymi się w kalejdoskopie? Zacznijmy od wyprawy do szklarza i wyboru bohatera kalejdoskopowych przygód - po starannym castingu wygrywa żaba.

  15. Stereometria Nowości z przeszłości

    Jeszcze raz o wzorze Eulera, czyli zastosowanie stawów i grobli w stereometrii

    W 1752 roku znakomity matematyk szwajcarski Euler, podówczas profesor Akademii Nauk w Berlinie, odkrył zadziwiający związek między liczbami |s;k;w ścian, krawędzi i wierzchołków dowolnego wielościanu wypukłego |W: Związek ten jest obecnie nazywany wzorem Eulera dla wielościanów i zwykle zapisuje się go w postaci

    s − k + w = 2:

    Podamy elementarny i chyba nader zabawny dowód tego wzoru.

  16. Planimetria Deltoid

    Dwusieczne

    Skoro dwusieczna to półprosta dzieląca kąt na dwa równe kąty, to dlaczego dwusieczne kątów wewnętrznych każdego trójkąta przecinają się w jednym punkcie? Otóż...

  17. Stereometria Deltoid

    w - k + s = 2

    Oznaczmy przez w ;k;s liczby odpowiednio wierzchołków, krawędzi i ścian wielościanu. W każdym wierzchołku schodzą się co najmniej trzy końce krawędzi i każda krawędź ma dwa końce, zatem |2k ⩾ 3w : Podobnie każda ściana ma co najmniej trzy boki, a każda krawędź należy do dwóch ścian, więc 2k ⩾ 3s: Ponadto jeśli wielościan jest wypukły, zachodzi wzór Eulera: w −k + s = 2:

  18. Geometria Co to jest?

    Iloczyn skalarny

    Jednym z podstawowych wzorów trygonometrycznych jest twierdzenie kosinusów podające zależność między bokami trójkąta a jednym z jego kątów:  2 2 2 c = a + b − 2ab cosC: Na formułę tę można patrzeć jako na uogólnienie twierdzenia Pitagorasa (do którego sprowadza się, gdy kąt C jest prosty, czyli cosC = 0):

  19. obrazek

    wikipedia

    Alfred Tarski (1901-1983)

    wikipedia

    Alfred Tarski (1901-1983)

    Planimetria

    O stopniu równoważności wielokątów

    W artykule tym pragnę omówić pewne pojęcia, należące całkowicie do zakresu geometrii elementarnej, a dotąd niemal wcale nie zbadane. Jak wiadomo, dwa wielokąty W i V nazywamy równoważnymi, wyrażając to wzorem: |W ∼V; jezeli dają się one podzielić na jednakową ilość wielokątów odpowiednio przystających...

  20. obrazek

    Gwoli precyzji ustalmy, że trzymając przed sobą zetknięte połówki przeciętej bryły obrotowej (prawą i lewą), obracamy prawą z nich ruchem do siebie.

    Gwoli precyzji ustalmy, że trzymając przed sobą zetknięte połówki przeciętej bryły obrotowej (prawą i lewą), obracamy prawą z nich ruchem do siebie.

    Stereometria Mała Delta

    Sferostożki więcej i bardziej

    Taka sobie niewinnie wyglądająca bryłka. Ot, powstała z obrotu kwadratu dookoła jego przekątnej, przecięcia tego, co powstało, na dwie identyczne części (wzdłuż płaszczyzny kwadratu), przekręceniu połowy o  ○ 90 i doklejeniu do drugiej części (czekającej w tym czasie w bezruchu). Szczęśliwa całość - sferostożek (ang. sphericon).

  21. obrazek

    Dwunastościan gwiaździsty mały

    Dwunastościan gwiaździsty mały

    Stereometria

    Wielościany gwiaździste

    Jeśli przy definiowaniu wielokąta zrezygnujemy z warunku, aby łamana tworząca go była zwyczajna, otrzymamy nową klasę wielokątów foremnych, tzw. gwiaździstych.

  22. Geometria różniczkowa

    Jak pryska bańka mydlana?

    W ostatnich kilkunastu latach na pograniczu geometrii różniczkowej i teorii równań różniczkowych rozrósł się nowy, pokaźny dział matematyki, poświęcony badaniom krzywych i powierzchni, które poruszają się zgodnie z jakimś określonym przepisem, zmieniając wraz z upływem czasu swój charakter i własności. Różne punkty mogą przy tym poruszać się z różnymi prędkościami, wyznaczonymi przez rozmaite geometryczne charakterystyki krzywej czy powierzchni...

  23. Planimetria

    Od kwadratu

    Rozpatrzmy dowolny trójkąt oraz cztery kwadraty zbudowane w sposób przedstawiony na rysunku 1. Wówczas zaznaczone kolorem trzy odcinki, łączące odpowiednie wierzchołki kwadratów oraz środek najniższego kwadratu, przecinają się w jednym punkcie.

  24. Planimetria Deltoid

    Mały wybór? I dobrze!

    Izometrią nazywamy przekształcenie, które nie zmienia odległości między punktami. Obrazy trzech niewspółliniowych punktów jednoznacznie ją wyznaczają. Twierdzenie Chaslesa głosi, że każda izometria płaszczyzny jest przesunięciem, obrotem lub symetrią z poślizgiem.

  25. obrazek

    Planimetria

    Siedmiokąta foremnego nie można skonstruować cyrklem i linijką

    ...a pięciokąt foremny można. Obok pokazana jest konstrukcja dziesięciokąta foremnego - kolorowy odcinek ma długość boku dziesięciokąta foremnego wpisanego w większy okrąg, a więc biorąc co drugi z wierzchołków takiego dziesięciokąta, otrzymamy pięciokąt foremny. Konstrukcja jest - jak widać - bardzo prosta. Ma tylko tę wadę, że nie wskazuje, jak konstruować inne wielokąty foremne.