Przeskocz do treści

Delta mi!

Drobiazgi

O tym, czego nie ma

Największa liczba pierwsza

Marek Kordos

o artykule ...

  • Publikacja w Delcie: kwiecień 1996
  • Publikacja elektroniczna: 20-03-2011

Jeśli liczba naturalna math jest największą liczbą pierwszą, to...

obrazek

...istnieje liczb pierwszych tylko skończenie wiele – na pewno nie więcej niż math Można je więc wszystkie ponumerować, powiedzmy mathgdzie, oczywiście, math
Liczba

display-math

ma paradoksalne własności. Jako większa od math nie jest liczbą pierwszą, jako liczba nie dzieląca się przez żadną z liczb math nie ma dzielników naturalnych różnych od 1 i niej samej – jest więc pierwsza. Dlatego też w jej definicji musiał zostać popełniony błąd. Ale jedynym miejscem niepewnym jest założenie, że istnieje największa liczba pierwsza – ono więc musi być fałszywe.

Jest to pierwsze historycznie spośród twierdzeń matematyki, które postulują, że czegoś jest nieskończenie wiele. Zostało udowodnione 2300 lat temu, najprawdopodobniej przez Euklidesa.

Mimo to, od czasu do czasu, prasa mniej lub bardziej naukowa donosi, że największą liczbą pierwszą jest – żeby podać konkretny przykład ze stycznia 1994 – liczba math Rzecz jasna, chodzi tu o największą liczbę pierwszą, jaką w danej chwili umielibyśmy konkretnie napisać np. w układzie dziesiętnym. Poszukiwanie takich liczb to dobre zajęcie, bo – jak widać – nigdy się nie skończy.