Przeskocz do treści

Delta mi!

Punkty libracji trzech ciał i twierdzenie KAM

Henryk Żołądek

o artykule ...

  • Publikacja w Delcie: październik 2016
  • Publikacja elektroniczna: 2 października 2016
  • Autor: Henryk Żołądek
    Afiliacja: Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki, Uniwersytet Warszawski
  • Wersja do druku [application/pdf]: (203 KB)

W artykule Stabilność układu słonecznego zamieszczonym w Delcie 9/2016 zaanonsowałem zastosowanie teorii Kołmogorowa-Arnolda-Mosera (KAM) do problemu stabilności w zagadnieniu |N ciał.

obrazek

Na Międzynarodowym Kongresie Matematyków w Amsterdamie w 1954 roku Andriej Kołmogorow przedstawił swój pomysł na dowód zbieżności tzw. szeregów Poincarégo, które opisują ruch |N ciał i które stanowią uogólnienie szeregów Fouriera, czyli sum sinusów i kosinusów o częstościach będących wielokrotnościami pewnej częstości podstawowej. Ścisłe dowody zbieżności szeregów Poincarégo zostały podane na początku lat 60. niezależnie przez Władimira Arnolda (ucznia Kołmogorowa) i Jurgena Mosera - twierdzenie KAM.

We właściwym sformułowaniu twierdzenia KAM mamy do czynienia z układem hamiltonowskim, czyli opisanym za pomocą funkcji Hamiltona, wyrażającej zależność całkowitej energii układu od pędów |pi, i położeń |qi,i = 1,...,n cząstek. Równania opisujące ewolucję takiego układu są równaniami różniczkowymi pierwszego rzędu na pędy oraz położenia i są równoważne układowi równań Newtona, które są równaniami drugiego rzędu na położenia. Funkcja Hamiltona ma następującą postać:

H

gdzie εH1 jest małym zaburzeniem, a H0 | jest funkcją Hamiltona układu całkowalnego, czyli takiego, który - mówiąc najprościej - umiemy rozwiązać.

Ściślej, własność całkowalności oznacza, że istnieją tzw. zmienne kąt-działanie |(φ,I),φ = (φ 1,...,φ n) (gdzie |φi są kątami), |I = (I1,...,In), w których odpowiedni układ różniczkowy przyjmuje szczególnie prostą postać:

d φ -dt = ω

Zatem ruch niezaburzony odbywa się na torusach |{I = const} parametryzowanych przez kąty φ i. Mamy |φi(t) = φi(0) +ω (z dokładnością do 2π ). Jeśli układ częstości (ω jest rezonansowy, tj. ω są liczbami wymiernymi, to ruch na torusie jest okresowy (układ po skończonym czasie wraca do punktu początkowego i ruch dalej odbywa się po tej samej trajektorii). W skrajnie przeciwnym przypadku każda trajektoria na torusie jest gęsta (tworzy obmotkę, przebiegając dowolnie blisko każdego punktu); mówimy wtedy, że ruch jest prawie okresowy. Jeśli częstości ω zmieniają się w sposób regularny w zależności od zmian działań |I j, to na większości torusów ruch jest prawie okresowy.

Teza twierdzenia KAM mówi, że jeżeli spełniony jest pewien warunek regularności częstości (nieznikanie pewnych wyznaczników), to przy przejściu od układu niezaburzonego, opisanego przez H0, do układu zaburzonego, opisywanego przez H, większość torusów niezmienniczych nie znika, tylko lekko się zaburza, i ruch na nich jest prawie okresowy. To, niestety, jeszcze nie gwarantuje stabilności, bo zawsze można tak dobrać dane początkowe |φ(0) i I(0), żeby ruch nie leżał na torusie niezmienniczym. Taka sytuacja ma miejsce dla liczby stopni swobody |n⩾ 3.

obrazek

Rys. 1

Rys. 1

Istnieje jednak spektakularny przykład dla |n = 2, gdzie teoria KAM daje tzw. stabilność w sensie Lapunowa. Jest to tzw. ograniczone zagadnienie 3 ciał. Możemy przyjąć, że te ciała to Słońce | S, Jowisz | J i Asteroida | A. Przy tym zakłada się, że S i |J poruszają się w stałej płaszczyźnie po orbitach kołowych ze stałą częstością, natomiast A porusza się w tej samej płaszczyźnie pod wpływem pola grawitacyjnego wytwarzanego przez | S i | J. Masa | A jest zaniedbywalnie mała. Po przejściu do układu położeń |q1,q2 i odpowiednich pędów |p1,p2, takich że |S i J spoczywają (oraz wyborze odpowiednich jednostek fizycznych), funkcja Hamiltona opisująca ruch |A wygląda następująco:

pict

gdzie µ = masa(J)/(masa(S) + masa(J)) < 1/2 a ρ1 i ρ2 są odległościami | A od | S i | J odpowiednio (Rys. 1).

obrazek

Rys. 2

Rys. 2

Punkty równowagi odpowiedniego układu hamiltonowskiego, nazywane punktami libracji, są punktami krytycznymi funkcji H (lokalne minima, maksima lub punkty siodłowe). Są one jednoznacznie wyznaczone przez punkty krytyczne funkcji V , której poziomice (krzywe, na których wartość |V jest stała) są naszkicowane na rysunku 2 Mamy tzw. współliniowe punkty libracji L1,L2 i |L3 na osi q1 i tzw. trójkątne punkty libracji (nazywane też punktami libracji Lagrange'a) L 4 i L 5 w wierzchołkach trójkątów równobocznych o boku SJ. Punkty |L1,2,3 są niestabilne dla układu Hamiltona już w przybliżeniu liniowym. Oznacza to, że umieszczona w tym punkcie Asteroida będzie pozostawać w spoczynku, ale dowolnie małe wychylenie jej z tego położenia spowoduje, że zacznie oddalać się od tego punktu, tak jak piłka położona na szczycie pagórka wytrącona z położenia równowagi zaczyna staczać się po zboczu.

W punktach L4 i L5 rozwinięcie funkcji |H w szereg Taylora i zastosowanie pewnej subtelnej redukcji (pochodzącej of George'a Birkhoffa) daje nową funkcję Hamiltona postaci H0 + εH1, do której daje się zastosować twierdzenie KAM. Ściślej, w przybliżeniu kwadratowym mamy

H= ω 1I1− ω 2I2 +..., ω j > 0,

gdzie I = 1(q˜ + ˜p ) j 2 j j a ˜q j i ˜p j są odpowiednimi funkcjami liniowymi (uogólnione położenia i pędy) zerującymi się w |L4 (odpowiednio |L5). Gdyby zamiast minusa w powyższym wzorze był plus, to funkcja |H (która nie zmienia się w trakcie ruchu) miałaby lokalne minimum w L 4 i własność stabilności byłaby automatyczna. Moglibyśmy też przyjąć H0 = ω 1I1−ω 2I2, a wyrazy wyższego rzędu potraktować jako zaburzenie εH1, ale wtedy nie byłoby spełnione założenie twierdzenia KAM o regularnej zależności częstości od działań.

Dlatego potrzebna jest dalsza redukcja, w wyniku której dostaniemy |H= H0 + ... z |H0 = ω 1I1− ω 2I2 + P ω i jIiI j. Przy tym należy odrzucić wartości parametru µ , odpowiadające rezonansom niskich rzędów, tj. |ω 1 ω 2 = 1 1,1 2, 1 3, oraz dodatkowej wartości |µc, związanej z warunkiem zdegenerowania zależności ω od I (wyliczonej przez André Deprit i Andrée Deprit-Bartholomé).

obrazek

Rys. 3

Rys. 3

Teraz stabilność położeń równowagi L4,5 wynika z następujących rozważań. Ponieważ funkcja H jest całką ruchu (jest ona stała na rozwiązaniach), to jej poziomice {H = h} są niezmienniczymi 3 -wymiarowymi hiperpowierzchniami w przestrzeni fazowej zmiennych q1,q2,p1,p2. Na każdej takiej poziomicy mamy dużo torusów niezmienniczych i każdy z nich rozcina poziomicę na dwa obszary, wnętrze i zewnętrze. Punkty z wnętrz nie wychodzą z nich w trakcie ewolucji i pozostają blisko punktu równowagi (Rys. 3).

Na koniec warto dodać, że są obserwowane gromady asteroid w trójkątnych punktach libracji związanych zarówno z parą Słońce-Jowisz, jak i z innymi parami. W przypadkach silnych rezonansów (jak te wyróżnione powyżej) takich asteroid brak.