Każda kropla, wpadając do naczynia, powiększa jego ładunek o
Ładunek ten rozkłada się równomiernie na powierzchni sfery i wytwarza wokół niej pole elektryczne, które jest takie jak pole pochodzące od ładunku punktowego, równego ładunkowi sfery, umieszczonego w jej środku. Na spadającą kroplę działają więc dwie siły: przyspieszająca ruch kropli siła ciężkości i opóźniająca ten ruch siła elektrostatyczna. Przyjmijmy, że do naczynia wpadło
kropli, a więc jego ładunek wynosi
Kropla
już do naczynia nie wpadnie, jeżeli jej prędkość na wysokości otworu w naczyniu będzie równa zeru.
Prędkość tę znajdziemy, obliczając energię kinetyczną, jaką ma na wysokości
kropla spadająca z wysokości
Będzie ona równa zmianie jej energii potencjalnej, na którą składa się energia pochodząca od pola grawitacyjnego i od pola elektrycznego przy spadku z wysokości
do wysokości
:
Mamy więc
a stąd
Z warunku
dostajemy
a to oznacza, że ostatnia kropla, która wpadnie do naczynia, ma numer
będący największą liczbą całkowitą spełniającą warunek: