Funkcja Eulera
Tym razem o kilku ciekawych własnościach funkcji Eulera.
Niech
(gdzie
jest dodatnią liczbą naturalną) oznacza funkcję Eulera, czyli liczbę liczb naturalnych nie większych od
i względnie pierwszych z
Na przykład
![]() |
Przypomnijmy dwie powszechnie znane własności funkcji Eulera:
Twierdzenie (Eulera). Jeśli
są liczbami naturalnymi oraz
to 
Zauważmy, że jeśli
jest liczbą pierwszą i
(czyli
), to wobec
mamy podzielność
czyli tezę w małym twierdzeniu Fermata.
Nietrudno jest udowodnić, że dla
liczba
jest parzysta (Czytelniku, spróbuj sam!). Okazuje się, że nie każda liczba naturalna parzysta jest wartością funkcji Eulera
Andrzej Schinzel udowodnił, że dla żadnego naturalnego
liczba
nie jest wartością funkcji 
Jeśli
jest liczbą pierwszą, to
(bo
). W 1932 roku Derrick Henry Lehmer spytał, czy istnieje taka liczba złożona
że
Pytanie to do dzisiaj pozostaje bez odpowiedzi. Można łatwo uzasadnić, że jeśli
to podzielność
jest równoważna podzielności
![]() |
(1) |
Oczywiście, gdy
to powyższa podzielność zachodzi (wtedy
jest liczbą pierwszą). Dla
nie znaleziono liczb pierwszych
spełniających podzielność (1) i jest wątpliwe, czy takie liczby istnieją. W 1980 roku Geoffrey L. Cohen i Peter Hagis dowiedli, że jeśli
jest liczbą złożoną i zachodzi podzielność (1), to
i 
Zajmijmy się teraz równaniem
![]() |
(2) |
gdzie
jest daną liczbą naturalną. Można udowodnić, że powyższe równanie
- (a)
- dla
ma 0 rozwiązań, - (b)
- dla
ma 2 rozwiązania, - (c)
- dla
ma 3 rozwiązania.
Zachodzi twierdzenie ogólne (Paul Erdős, Kevin Ford): dla każdej liczby naturalnej
istnieje taka liczba naturalna
że równanie (2) ma dokładnie
rozwiązań, co więcej, dla danego
takich liczb jest nieskończenie wiele.
W 1922 roku Robert Daniel Carmichael sformułował hipotezę: nie istnieje takie
że równanie (2) ma dokładnie jedno rozwiązanie. Hipotezę można również wyrazić następująco: dla każdej liczby naturalnej
istnieje taka liczba naturalna
że 
W 1994 roku Aaron Schlafly i Stan Wagon, przeprowadzając obszerne obliczenia numeryczne, wykazali, że jeśli równanie
ma dokładnie jedno rozwiązanie (tj.
), to
tzn. najmniejszy kontrprzykład (jeśli istnieje) dla hipotezy Carmichaela ma ponad 10 milionów cyfr.
Przejdźmy do równania
![]() |
(3) |
gdzie
jest daną liczbą naturalną. Dla
mamy nieskończenie wiele rozwiązań i są nimi wszystkie liczby pierwsze (dlaczego?). Dla
i
mamy rozwiązania odpowiednio
i
co Czytelnik zechce sprawdzić. Niech teraz
będzie dowolnie ustaloną liczbą nieparzystą. Na mocy wzmocnionej hipotezy Goldbacha (każda liczba większa od 6 jest sumą dwóch różnych liczb pierwszych) istnieją takie różne liczby pierwsze
i
że
Przyjmijmy
Wtedy
spełnia równanie (3), gdyż
![]() |
To pokazuje hipotetyczną rozwiązalność równania (3) dla każdego nieparzystego 
Okazuje się, że równanie (3) może nie mieć rozwiązania dla
parzystych. Najmniejszymi takimi
są: 10, 26, 34, 50, 52, 58, 86, 100. W 1995 roku Jerzy Browkin i Andrzej Schinzel udowodnili następujący
Fakt. Równanie
![]() |
nie ma rozwiązań dla każdego naturalnego 
Na koniec kilka zadań dla Czytelnika.







