Odkryj wielokąt!
Punkty z rysunku obok, jako środki kolejnych boków wielokąta, kodują pewien obrazek. Czy potrafisz go odtworzyć? Spróbuj!
Rozpatrzmy sytuację ogólną.
Problem. Czy (jak?, kiedy?) można odtworzyć wielokąt, gdy znamy środki jego kolejnych boków?
Rozpoczniemy od prostego przypadku, gdy na płaszczyźnie dane są trzy różne punkty Zbudujemy trójkąt taki, że punkty są środkami jego boków. Pokażemy jednocześnie, że złożenie trzech (ogólnie nieparzystej liczby ) symetrii środkowych jest symetrią środkową.
Gdy będzie to dla nas wygodne, na punkty płaszczyzny będziemy patrzeć jak na wektory zaczepione w początku układu współrzędnych (oznaczenia wektorów pomijamy).
Wybieramy na płaszczyźnie punkt różny od wszystkich punktów Symetryczne odbicie punktu względem punktu wyznacza punkt symetryczne odbicie punktu względem daje punkt a symetryczne odbicie punktu względem wyznacza punkt (Rys. 2). Takie przekształcenie płaszczyzny jest symetrią środkową.
Istotnie, eliminując i z równań opisujących warunki symetrii
otrzymujemy wzór a stąd poszukiwany środek symetrii
Jako jedyny punkt stały przekształcenia punkt jest jednym z wierzchołków trójkąta który łatwo wyznaczyć (Rys. 2).
Rozumowanie to działa w przypadku każdej nieparzystej liczby różnych punktów płaszczyzny, które są środkami kolejnych boków wielokąta. Proponujemy samodzielnie przeprowadzić tę konstrukcję dla punktów z rysunku 1 - rozwiązanie (o świątecznym charakterze) znajduje się tutaj.
Rozpatrzmy teraz przypadek, gdy na płaszczyźnie dane są cztery różne punkty będące środkami kolejnych boków wielokąta. Pokażemy, że w tym przypadku złożenie symetrii środkowych jest translacją.
Wybieramy na płaszczyźnie punkt różny od każdego z punktów Symetryczne odbicie punktu względem punktu daje punkt symetryczne odbicie punktu względem wyznacza punkt symetryczne odbicie punktu względem daje i wreszcie symetryczne odbicie punktu względem wyznacza punkt Eliminując punkty z warunków symetrii
otrzymujemy
co oznacza, że przekształcenie płaszczyzny jest translacją o wektor Gdy jest to translacja o wektor niezerowy, nie istnieje czworokąt, którego środki boków są zadanymi wcześniej punktami (gdyż jeden z wierzchołków tego czworokąta musiałby być punktem stałym wspomnianej translacji).
Równość (czyli istnienie czworokąta spełniającego warunki zadania) ma miejsce wtedy i tylko wtedy, gdy
czyli gdy środek odcinka łączącego punkty i pokrywa się ze środkiem odcinka łączącego punkty i Wówczas czworokątów spełniających warunki zadania jest nieskończenie wiele, punkt (lub ), różny od każdego punktu możemy wybrać dowolnie (Rys. 3).
Rozumowanie to pozostaje prawdziwe dla dowolnej parzystej liczby różnych punktów płaszczyzny będących środkami kolejnych boków wielokąta. Odkryliśmy w ten sposób następujące twierdzenie:
Twierdzenie (Edward Kasner, 1903). Niech będą różnymi punktami płaszczyzny, które są środkami kolejnych boków wielokąta.
Punkt (b) geometrycznie oznacza, że zbiory punktów o indeksach nieparzystych oraz parzystych mają ten sam środek ciężkości. Wówczas takich wielokątów jest nieskończenie wiele i dowolny punkt płaszczyzny różny od punktów może pełnić rolę wierzchołka
Powyższe uwagi nie wyczerpują zagadnienia. Rozważania można prowadzić, rozpatrując dla "wieloboki przestrzenne".
Opisana sytuacja to prosta ilustracja działania skończonych szeregów Fouriera, ogólniej - analizy harmonicznej, która z małego zbioru informacji stara się odtworzyć ogólniejsze zjawisko. Czasem można to zrobić bardzo precyzyjnie, innym razem tylko w ogólnym zarysie, a czasem jest to niemożliwe.