Przeskocz do treści

Delta mi!

  1. Algorytmy

    Podróże w Nd

    Jakiś czas temu koleżanki i koledzy z redakcji Delty poprosili mnie, żebym opisał, czym zajmuję się naukowo, i przedstawił pewien ciekawy wynik, który udało mi się wraz ze współpracownikami niedawno uzyskać. Pisząc ten tekst, postaram się przybliżyć tę właśnie dziedzinę, która mi osobiście wydaje się interesująca chyba dlatego, że rozważa problemy o bardzo prostym sformułowaniu geometrycznym, a mimo to jest w niej więcej znaków zapytania niż odpowiedzi. Badania często okazują się ciekawą kombinatoryką, popartą jednak zwykle geometrycznymi intuicjami. Wiele fundamentalnych pytań otwartych można sformułować bardzo szybko, jedno z nich przybliżę na końcu tego tekstu.

  2. Algebra

    Podróże w Rd

    ... Uważam, że jednostronnicowy dowód Sergeya Sevastianova jest wyjątkowy. Pál Erdős często odwoływał się do Księgi, w której Bóg trzyma wszystkie najelegantsze dowody. Zainspirowani tym matematycy, Aigner i Ziegler, wydali znakomitą książkę Dowody z Księgi, którą wszystkim szczerze polecam. Dowód Sevastianova mógłby również trafić do tej Księgi. Mimo że ja i moi koledzy rozumiemy każdy krok tego dowodu z osobna, to nie wiemy, skąd bierze się taki sposób rozumowania, niespotykany nigdzie indziej w naszej dziedzinie. Wierzę, że zrozumienie idei ukrytych w tym dowodzie może przyczynić się do kolejnych ciekawych wyników. Kto wie, może ktoś z Czytelników pomoże?

  3. Algebra Co to jest?

    Grupa

    Ustalmy zbiór X; np. X = {1;2; :::;2019}: Niech |S X oznacza zbiór funkcji odwracalnych z X w X: Funkcje z |SX można składać i odwracać, nie wychodząc poza SX: W zbiorze SX istnieje też funkcja identycznościowa. Tytułowe grupy są abstrakcyjnym sposobem wyrażenia powyższych własności zbioru S : X

  4. Algebra Co to jest?

    Pierścień

    Jednym z fundamentalnych pojęciem algebraicznych są pierścienie. Zostały one wprowadzone pod koniec XIX wieku z nadzieją na pomoc w udowodnieniu Wielkiego Twierdzenia Fermata. Jak wiadomo, zostało to uczynione dopiero w 1995 roku, więc przez długi czas nadzieja ta była płonna...

  5. Algebra Drobiazgi

    Skąd mógł to wiedzieć?

    W Δ3 18 (Z notatnika geniusza) i w tym numerze (Zagnieżdżone pierwiastki) przedstawione są różne zależności liczbowe pochodzące od Ramanujana. Robią ogromne wrażenie, tym bardziej że Ramanujan podał je bez uzasadnień i dla nas mają status natchnionej wizji...

  6. Algebra

    Ile jest podprzestrzeni?

    Jaka jest liczba różnych k -elementowych podzbiorów zbioru n -elementowego? Jest to jedno z pierwszych pytań, które zadajemy sobie, zaczynając zajmować się elementarną kombinatoryką. Wkrótce dowiadujemy się, że liczbę tę oznacza się przez (nk) (symbol Newtona), a następnie poznajemy różne metody jej wyznaczania. Wyjściowe pytanie o liczbę podzbiorów przeniesiemy na nieco wyższy poziom abstrakcji, zmieniając w nim kilka pojęć...

  7. Algebra Mała Delta

    Pierwiastkowanie pod kreską

    Każdy z nas obcował z działaniami pisemnymi na liczbach naturalnych - dodawaniem, odejmowaniem, mnożeniem i dzieleniem. Z pisemnym potęgowaniem można się rozprawić, wielokrotnie stosując pisemne mnożenie. Dzieląc dwie liczby całkowite, możemy otrzymać pełne rozwinięcie dziesiętne (okresowe lub skończone) albo uzyskać dowolną dokładność wyniku. Tak, działania pisemne są sprytne. A co z pierwiastkowaniem? Czy istnieje metoda na pisemne wyznaczanie kolejnych cyfr rozwinięcia dziesiętnego liczby  √ --- | 17? Odpowiedź brzmi: tak.

  8. obrazek

    Algebra

    Symetrie ciał i grupy: teoria Galois

    Poniższa opowieść była na tyle ważna dla młodego, zaledwie dwudziestoletniego, matematyka Évariste'a Galois, że poświęcił ostatni dzień przed pojedynkiem, aby spisać ją w liście do przyjaciela. Niestety, nie dostał od losu szansy na kontynuowanie swoich prac, ale jakiś czas po jego śmierci matematycy zrozumieli znaczenie jego pomysłów. Ślady teorii, z której zarysem Czytelnik zapoznać się może w dalszej części artykułu, odnaleźć można w wielu gałęziach współczesnej matematyki. Jej bezpośrednim następstwem jest wiele efektownych rozwiązań problemów, których ludzkość szukała przez setki lat: nierozwiązalność (przez pierwiastniki) równań wielomianowych stopnia 5 lub wyższego, niekonstruowalność pewnych wielokątów foremnych (cyrklem i linijką), a także niewykonalność klasycznych konstrukcji geometrycznych, czyli podwojenia sześcianu, trysekcji kąta i kwadratury koła.

  9. Algebra

    Combinatorial Nullstellensatz w teorii liczb

    W Delcie 7/2017 przedstawiliśmy kilka "olimpijskich" zastosowań twierdzenia Combinatorial Nullstellensatz. Okazuje się, że zamiast "zwykłych" wielomianów wielu zmiennych możemy rozważać wielomiany o współczynnikach będących resztami z dzielenia przez pewną liczbę pierwszą |p; z dodawaniem i mnożeniem modulo p: Poniżej przedstawimy trzy klasyczne twierdzenia, których proste dowody są oparte na Combinatorial Nullstellensatz w wersji "resztowej". Twierdzenia te są szczególnie bliskie zastosowaniom olimpijskim.

  10. obrazek

    Algebra Jak to działa?

    Maszyna różnicowa

    Dlaczego w szkole tak dużo uczymy się o wielomianach? Są dwa podstawowe powody. Pierwszy z nich - całkiem zrozumiały - po prostu jest to niemal największa klasa funkcji, których wartości umiemy obliczać. Potrafimy jeszcze dzielić wartości wielomianów, ale z pozostałymi funkcjami, które występują w programie szkolnym, a później na studiach, w zasadzie mielibyśmy sporo problemów.

  11. Algebra

    Najłatwiejsze zadanie?

    Na drugim etapie tegorocznej Olimpiady Matematycznej pojawiło się pewne zadanie. Pojawiło się ono na zawodach z numerem 1 i (zgodnie z oczekiwaniami) okazało się bardzo łatwe - rozwiązała je znacząca większość uczestników. Przedstawimy szkic rozwiązania... x

  12. Algebra Co to jest?

    Liczby zespolone i kwaterniony

    Tak jak problemy praktyczne prowadzą do równań, tak równania prowadzą czasem do nowych rodzajów liczb. Ambitny kmieć z czasów Mieszka I, będący właścicielem trzech krów i marzący o nabyciu (lub zdobyciu) dodatkowych sztuk bydła tak, by stać się szanowanym posiadaczem tuzina krów, musiał niewątpliwie rozwiązywać zadanie matematyczne, które dziś zapisujemy równaniem 3 + x = 12: Gdy zamienimy występujące tu liczby miejscami, otrzymamy równanie x + 12 = 3; które "nie da się rozwiązać": gołym okiem widać, że wśród liczb, za pomocą których zwykliśmy liczyć krowy (czyli liczb naturalnych), nie znajdzie się żadna, która by spełniała to równanie...