Stowarzyszenie na rzecz Edukacji Matematycznej
LXVI Olimpiada Matematyczna
W LXVI Olimpiadzie Matematycznej uczestniczyło 895 uczniów, więc aż o 272 osoby mniej niż rok wcześniej, do zawodów stopnia drugiego zakwalifikowano 409 uczniów, a do zawodów stopnia trzeciego -126 uczniów. Wiele osób, w tym niżej podpisany, uznało, że zadania domowe były za trudne i nie zachęcały uczniów spoza szkół o dużych tradycjach olimpijskich (a raczej uczniów nauczycieli, którzy uczą matematyki, a nie tylko przygotowują do zdania matury) do startowania w tych zawodach.
Niektóre okręgi obniżyły zwyczajowe progi dopuszczenia do zawodów drugiego stopnia, ale i tak zakwalifikowano do nich o 98 osób mniej niż rok wcześniej. Komisja zadaniowa OM starała się wziąć pod uwagę te czynniki. Jako członek tego gremium uznaję, że zadania na zawody drugiego i trzeciego stopnia nie były za trudne.
Do finału dopuściliśmy tych uczniów, którzy uzyskali co najmniej 19 punktów, co oznacza rozwiązanie 3,5 zadania (np. ). Obniżenie progu do 18 punktów oznaczałoby dopuszczenie dodatkowych 22 osób do finału.
Zadania finałowe dobrze rozróżniły czołówkę: tym razem ustalając składy reprezentacji Polski na Olimpiadę Międzynarodową i inne zawody, nie musieliśmy korzystać z wyników zawodów okręgowych. Tylko 9 finalistów (około 7%) nie rozwiązało żadnego zadania (w drugim stopniu było to 30 osób (około 7,4%)).
Najtrudniejsze z zadań finałowych było zadanie piąte, z planimetrii, choć spodziewaliśmy się, że będzie nim zadanie trzecie, z kombinatoryki. Co więcej, w czasie omawiania rozwiązań tuż po zawodach dwóch byłych olimpijczyków przedstawiło swe rozwiązania tego zadania wykorzystujące wiele twierdzeń, często nieznanych większości słuchających.
Oto treść zadania:
Zadanie. Dowieść, że przekątne wypukłego czworokąta są prostopadłe wtedy i tylko wtedy, gdy wewnątrz tego czworokąta znajduje się punkt, którego rzuty prostokątne na boki czworokąta są wierzchołkami prostokąta.
Podam jego "antygeometryczne" rozwiązanie. Drobne luki Czytelnicy wypełnią, jeśli zechcą, sami.
Załóżmy, że rzuty punktu na boki czworokąta tworzą prostokąt i obierzmy układ współrzędnych tak, by był jego początkiem, a osie były równoległe, odpowiednio, do boków prostokąta. Niech rzutem na będzie punkt na bok - punkt na bok - punkt a na bok - punkt przy czym Prosta jest prostopadła do wektora więc ma równanie Podobnie równaniami prostych i są odpowiednio i
Proste i przecinają się w punkcie więc Podobnie i Prosta jest równoległa do osi a prosta - do osi więc przekątne prostokąta są prostopadłe.
Z kolei gdy czworokąt ma prostopadłe przekątne, możemy umieścić go tak, by miał wierzchołki na osiach: i Z już udowodnionego wiemy, że jeśli rzuty pewnego punktu tworzą prostokąt, ma on boki równoległe do osi. Równaniem prostej jest bo spełniają je współrzędne punktów i Analogicznie równaniami prostych i są odpowiednio i Niech
Wyliczone zostały kolejno współrzędne tych punktów w zależności od pierwszej współrzędnej punktu oznaczonej literą tak, by punkt leżał na prostej punkt - na punkt - na punkt - na Znajdziemy taki punkt że odcinek będzie prostopadły do prostej a odcinek - prostopadły do prostej Spełnione mają być równości
oraz
Wynika z nich, że i W taki sam sposób znajdujemy taki punkt że i :
Obliczymy z równania :
zatem Dla tego otrzymujemy
Rzutami punktu na proste i są punkty
Jedyną trudnością w tym rozwiązaniu jest wybranie "dobrego" układu współrzędnych.