Przeskocz do treści

Delta mi!

  1. Stereometria Kącik przestrzenny

    Inwersja w przestrzeni i rzut stereograficzny

    Kiedy na płaszczyźnie mamy do czynienia z okręgami, to bardzo często posługujemy się rachunkiem na kątach, ponieważ znamy wiele przydatnych twierdzeń i faktów z tego zakresu. Niestety, trudno o analogiczne narzędzia w przestrzeni. Stanowi to wielki kłopot, gdy zmagamy się z zadaniami o sferach. Istnieje jednak kilka innych technik, skutecznych w zadaniach o okręgach, które działają również w przestrzeni. Są to: potęga punktu, jednokładność oraz inwersja. O tej ostatniej metodzie opowiemy w tym kąciku.

  2. Stereometria Deltoid

    Okręgi wielkie

    Którędy przebiega najkrótsza droga lotnicza z Warszawy do Vancouveru? Wbrew pozorom – mimo podobnej szerokości geograficznej – wcale nie wzdłuż równoleżnika, a nad Grenlandią, o czym łatwo się przekonać, naciągając nitkę na globusie.

  3. Stereometria Stowarzyszenie na rzecz Edukacji Matematycznej

    Wszystko może się przydać

    Panuje przekonanie, że w nauczaniu matematyki powinno się eksponować fakt, że ma ona zastosowania. Gdy przyjrzeć się podręcznikom, a zwłaszcza testom kwalifikacyjnym, trudno oprzeć się wrażeniu, że są to rzeczy w stylu mierzenia wysokości piramidy za pomocą długości jej cienia i twierdzenia Talesa, lub też zadań w stylu: jeśli dwóch robotników kopie rów w ciągu 2 godzin, to ilu ich potrzeba, aby ten rów wykopać w 15 sekund? (odpowiedź: 1440).

  4. obrazek

    Stereometria Lekcja rysunku

    Lekcja 1 - Stella octangula

    Wydaje się, że w czasach szybkich komputerów, programów graficznych i innych gadżetów nie ma sensu zajmowanie się rysunkiem odręcznym. Równie dobrze jednak można by zrezygnować z nauki pisania i tabliczki mnożenia – są przecież odpowiednie edytory i kalkulatory. Zdarza się jednak, że rozwiązując jakieś zadanie, dobrze byłoby podeprzeć naszą wyobraźnię właśnie rysunkiem, a nie ma pod ręką supernowoczesnych narzędzi.

  5. Stereometria

    Kwadrat, którego nie ma

    Przemieszczając się na płaszczyźnie za pomocą ruchów „do przodu”, „do tyłu”, „w lewo” i „w prawo”, możemy w szczególności narysować kwadrat. Czy analogiczna sytuacja rozważana na zakrzywionej powierzchni zawsze pozwala na wygenerowanie kwadratu przez zakreślaną trajektorię? Rozważmy sferę, którą często wykorzystuje się w globalnym modelowaniu powierzchni Ziemi.

  6. Stereometria Kącik przestrzenny

    Jak wyjść z dżungli?

    Każdy, kto był w dżungli lub chociaż widział ją w jakimś filmie, wie, że poruszanie się po niej jest, delikatnie mówiąc, dosyć uciążliwe. Stanowi to ogromny kłopot szczególnie wtedy, gdy ktoś się w niej zgubi i chce się jakoś wydostać. Nie dość, że nie wiadomo, w jakim kierunku iść, to w ogóle ciężko jest nam pokonywać przeszkody (a rozwiązania siłowe, takie jak maczeta, niewiele dają). Istnieje następujące zalecenie: wystarczy znaleźć strumień (co zresztą wcale nie musi być łatwe), a potem liczyć na to, że zaprowadzi nas on do większej rzeki, a ta, być może, do morza.

  7. Stereometria Kącik przestrzenny

    Kąty płaskie w przestrzeni

    Tym razem opowiemy o kątach w przestrzeni, a dokładniej o tym, jak rozwiązywać zadania zawierające nierówności miar kątów w przestrzeni. W zadaniach pojawiają się dwa typy kątów – płaskie i dwuścienne. Ten odcinek poświęcimy kątom płaskim, a o dwuściennych opowiemy następnym razem.

  8. Stereometria Deltoid

    Numerowanie

    Na pierwszym etapie tegorocznej Olimpiady Matematycznej pojawiło się poniższe zadanie 1 o numerowaniu krawędzi dwunastościanu. Spośród licznych zadań o podobnej tematyce prezentujemy kilka o dość różnorodnych rozwiązaniach.