Przeskocz do treści

Delta mi!

  1. obrazek

    Stereometria

    Czego jeszcze nie wiedzieliśmy o bryłach platońskich?

    "Bryły platońskie" to inna nazwa wielościanów foremnych. W przestrzeni trójwymiarowej jest ich dokładnie 5 i są to: czworościan, sześcian, ośmiościan, dwunastościan oraz dwudziestościan foremny. Ich historia sięga czasów starożytnych i wydawałoby się, że po ponad dwóch tysiącach lat wiemy o nich już absolutnie wszystko.

  2. Stereometria

    Wierzchołki, krawędzie, ściany i dalej

    Zajmijmy się następującym prostym problemem. Niech P będzie wielościanem wypukłym o trójkątnych ścianach. Oznaczmy przez V;E; F odpowiednio liczbę jego wierzchołków, krawędzi i ścian. Jakie trójki (V; E;F ) liczb naturalnych możemy w ten sposób uzyskać? Bez trudu możemy wypisać dwie równości:

    V − E + F = 2; 3F = 2E:
  3. Stereometria

    Przyroda geometrą

    Istnieje nieskończenie wiele brył geometrycznych, którymi matematycy nigdy dotąd się nie zajmowali, bo po prostu nie były one dla nich wystarczająco interesujące. Czasem jednak zdarza się, że i niematematyk natrafi na coś, co z pewnych powodów okaże się ważne, a wtedy robi się naprawdę ciekawie.

  4. Stereometria Deltoid

    Kroimy kostkę

    Podzielmy kostkę na 27 przystających sześcianów (jak w kostce Rubika), a następnie wyrzućmy 7 z nich: ten ze środka oraz środkowy na każdej ze ścian. W kolejnych krokach konstrukcji powtarzajmy powyższą operację dla każdego z pozostających mniejszych sześcianów.

  5. Stereometria

    Wpisywanie w przestrzeni

    W poprzednim numerze przedstawiliśmy cykl wzajemnie wpisanych trójkątów i dwa wzajemnie wpisane pięciokąty. To było na płaszczyźnie. A teraz będzie przykład wzajemnego wpisania w przestrzeni trójwymiarowej.

  6. Stereometria Drobiazgi

    Dwie sfery w jednym miejscu

    W IV wieku przed naszą erą za sprawą Platona panowało powszechne przekonanie, że sfera niebieska - jako doskonała - dopuszcza jedynie doskonałe ruchy planet, jedynych ruchomych obiektów na niej. Ruchy doskonałe to ruchy jednostajne i odbywające się po doskonałych trajektoriach. Doskonała trajektoria to taka, która może ślizgać się po sobie - na sferze tę własność mają tylko okręgi. Powstawał więc problem, jak wytłumaczyć nieregularności ruchu planet na niebie, a w szczególności powstawanie pętli, o jakich jest mowa w artykule Tomasza Kwasta.

  7. Stereometria Drobiazgi

    Wielościan w zeszycie

    Prawie każdy wielościan ma talię (to wśród nich jest nawet częstsze niż u ludzi!), czyli pewien jego płaski przekrój ma obwód mniejszy od sąsiednich (dokładniej: niewielka zmiana płaszczyzny tnącej daje wielokąt o większym obwodzie - a bardziej po ludzku: nałożona w takim miejscu gumka recepturka nie zsunie się). Dla sześcianu taką talią jest jego przekrój będący sześciokątem foremnym (narysuj ją!).

  8. Stereometria

    Stożki i walce

    Od Archimedesa wiemy, że zdaniem Demokryta stożek stanowi trzecią część walca, ale pierwszy udowodnił to Eudoksos. Znamy ten rezultat z XII Księgi Elementów Euklidesa (Stwierdzenie 10)...

  9. Stereometria Deltoid

    Budowle z klocków

    Wiele zadań przestrzennych łatwiej rozwiązać, gdy najpierw zbada się analogiczny problem płaski. Taki dwuwymiarowy odpowiednik czasem sam się narzuca, a czasem jego sformułowanie wymaga pewnej pomysłowości. Poniżej prezentujemy przykłady zadań o przestrzennych klockach, na różne sposoby "spłaszczane".

  10. Stereometria

    Czy Ziemia jest płaska? A może jednak?

    W artykule Czy Ziemia jest płaska (Delta 4/2016) pokazaliśmy, że sfera (będąca uproszczonym modelem powierzchni Ziemi) nie jest płaska, to znaczy nie daje się podzielić na fragmenty, z których każdy byłby izometryczny z pewnym fragmentem płaszczyzny. Przypomnijmy, że ta cecha odróżnia sferę od powierzchni bocznych walca i stożka. Pójdźmy więc dalej - czy jest możliwa taka gładka deformacja sfery, aby uzyskać powierzchnię płaską?

  11. Stereometria Drobiazgi

    Brzydka prawda

    Wielościan wypukły, którego ściany są jednakowymi wielokątami foremnymi, może mieć ściany trójkątne, czworokątne lub pięciokątne. Ostatnie dwa przypadki realizują się tylko w postaci sześcianu i dwunastościanu...

  12. Stereometria Nowości z przeszłości

    Jeszcze raz o wzorze Eulera, czyli zastosowanie stawów i grobli w stereometrii

    W 1752 roku znakomity matematyk szwajcarski Euler, podówczas profesor Akademii Nauk w Berlinie, odkrył zadziwiający związek między liczbami |s;k;w ścian, krawędzi i wierzchołków dowolnego wielościanu wypukłego |W: Związek ten jest obecnie nazywany wzorem Eulera dla wielościanów i zwykle zapisuje się go w postaci

    s − k + w = 2:

    Podamy elementarny i chyba nader zabawny dowód tego wzoru.

  13. Stereometria Deltoid

    w - k + s = 2

    Oznaczmy przez w ;k;s liczby odpowiednio wierzchołków, krawędzi i ścian wielościanu. W każdym wierzchołku schodzą się co najmniej trzy końce krawędzi i każda krawędź ma dwa końce, zatem |2k ⩾ 3w : Podobnie każda ściana ma co najmniej trzy boki, a każda krawędź należy do dwóch ścian, więc 2k ⩾ 3s: Ponadto jeśli wielościan jest wypukły, zachodzi wzór Eulera: w −k + s = 2:

  14. obrazek

    Gwoli precyzji ustalmy, że trzymając przed sobą zetknięte połówki przeciętej bryły obrotowej (prawą i lewą), obracamy prawą z nich ruchem do siebie.

    Gwoli precyzji ustalmy, że trzymając przed sobą zetknięte połówki przeciętej bryły obrotowej (prawą i lewą), obracamy prawą z nich ruchem do siebie.

    Stereometria Mała Delta

    Sferostożki więcej i bardziej

    Taka sobie niewinnie wyglądająca bryłka. Ot, powstała z obrotu kwadratu dookoła jego przekątnej, przecięcia tego, co powstało, na dwie identyczne części (wzdłuż płaszczyzny kwadratu), przekręceniu połowy o  ○ 90 i doklejeniu do drugiej części (czekającej w tym czasie w bezruchu). Szczęśliwa całość - sferostożek (ang. sphericon).

  15. obrazek

    Dwunastościan gwiaździsty mały

    Dwunastościan gwiaździsty mały

    Stereometria

    Wielościany gwiaździste

    Jeśli przy definiowaniu wielokąta zrezygnujemy z warunku, aby łamana tworząca go była zwyczajna, otrzymamy nową klasę wielokątów foremnych, tzw. gwiaździstych.

  16. obrazek

    Stereometria

    Wypełniane przestrzeni

    Problem wypełnienia przestrzeni bez luk jednakowymi wielościanami okazuje się wcale nie tak prosty, jak na pierwszy rzut oka można oczekiwać. Spośród pięciu wielościanów platońskich tylko jeden nadaje się do tego. Oczywiście, jest to sześcian...

  17. Stereometria

    Jakich wielościanów nie ma, a jakie są?

    Kubuś Fatalista, bohater książki Denisa Diderota, spotkał pewnego razu rozpaczliwie płaczące dziecko. Na pytanie, co mu się stało, odpowiedziało, że kazano mu powiedzieć A. Cóż w tym złego? - dopytywał się Kubuś. - Bo jak powiem A, to każą mi powiedzieć B - poskarżył się malec.

  18. Stereometria Deltoid

    Panaceum?

    W rozwiązaniach wielu zadań kluczowe jest rozłożenie danej bryły tak, by uzyskać jej siatkę. Jeśli z kolei chcemy zbudować model wielościanu, często rysujemy jego siatkę, wycinamy, składamy... Siatki to przydatne narzędzie, jednakże - jak to z narzędziami bywa - trzeba ostrożnie się nimi posługiwać. Proszę ocenić poprawność poniższych trzech stwierdzeń.