Przeskocz do treści

Delta mi!

  1. Algorytmy Mała Delta

    O rozgrywkach ligowych

    W sporcie stosowane są różne systemy prowadzenia rozgrywek. Jednym z nich jest tzw.  system pucharowy, w którym zwycięzca meczu kwalifikuje się do dalszych gier, przegrany zaś odpada z turnieju. Aby system był bardziej sprawiedliwy, dokonuje się początkowego rozstawienia przeciwników, tak by teoretycznie najsilniejsi spotkali się jak najpóźniej.

  2. Planimetria Mała Delta

    Równanie Pitagorasa

    Pomysł tego artykułu powstał na lekcji matematyki w I klasie gimnazjum. Rozwiązywałem z uczniami zadanie z podręcznika wydanego przez Gdańskie Wydawnictwo Oświatowe: który z narysowanych trójkątów jest przystający do trójkąta math?

  3. Stereometria

    Ile jest wielościanów foremnych?

    Pytanie postawione w tytule wydaje się dziwne. Przecież wiadomo co najmniej od czasów Platona, że wielościanów foremnych jest pięć typów: czworościan foremny, sześcian oraz ośmiościan, dwunastościan i dwudziestościan – wszystkie foremne. Łatwo też pokazuje się, że nie może być ich więcej. W czym zatem problem?

  4. Teoria Mnogości Mała Delta

    Pizza Venna

    Moja rodzina lubi pizzę, a ja lubię ją piec. Jednak w naszej gromadce nikt nie lubi jeść takiej samej pizzy, jak pozostali członkowie rodziny. Jest nas tylko czworo, więc można sobie z tym poradzić bez trudu, używając tylko dwóch składników – typowa pizza wygląda więc tak...

  5. Teoria miary Co to jest?

    Pole i objętość

    W numerze poświęconym mierze (8/2008) nie sposób pominąć tych pierwszych, czyli zwykłych miar geometrycznych (zważmy, że geometria ma miarę w swojej nazwie).Wydaje się, że wiemy o nich wszystko, bo przecież stykaliśmy się z nimi niemal od zerówki. Okazuje się jednak, że i na ich temat można postawić pytania o nieoczywistych odpowiedziach.

  6. Teoria miary Co to jest?

    Zbiory niemierzalne

    Korzenie teorii miary sięgają tak podstawowych pojęć, jak długość (np. odcinka), pole (np. koła) i objętość (np. kuli). Wraz z rozwojem matematyki konieczne stało się uogólnienie tych pojęć w taki sposób, żeby dało się „zmierzyć” coraz bardziej skomplikowane podzbiory danej przestrzeni – na przykład prostej rzeczywistej math do której w tym artykule ograniczymy nasze rozważania.

  7. Rachunek prawdopodobieństwa Co to jest?

    Miara informacji

    Jak wiadomo, komputery traktują wszystkie dane, na których działają, jako ciągi bitów, z których każdy może mieć dwie wartości (0 lub 1). Przykładowo, ten tekst jest zapisany w ten sposób, że każdej z liter i pozostałych znaków odpowiada ciąg 8 bitów. Daje to math czyli 256 możliwości, co w zupełności wystarcza do zapisania wszystkich potrzebnych znaków. Jednak w rzeczywistości różnych znaków występujących w tekście jest mniej. Problem jest więc taki: jak zapisać tekst tak, żeby na każdą jego literę przypadało jak najmniej bitów?

  8. Teoria Mnogości Co to jest?

    Miara liczności

    Jednym z podstawowych sposobów mierzenia zbioru jest liczenie jego elementów. Liczenie ma jednak jasny sens tylko dla zbiorów skończonych. Wiadomo, co to znaczy, że jakiś zbiór ma math math czy math elementów. W przypadku zbiorów nieskończonych sytuacja jest natomiast znacznie mniej oczywista. Czy zbiorowi nieskończonemu da się w ogóle przypisać liczbę elementów sensowniej niż przez uznanie, że wynosi ona zawsze math ?

  9. Analiza Drobiazgi

    Wielomiany Lagrange’a

    Joseph Louis Lagrange (1736--1813) był ogromnie zniesmaczony ciągle nieudanymi próbami ścisłego zdefiniowania koniecznego dla zastosowań matematyki pojęcia pochodnej funkcji. Rzecz udawała się właściwie tylko dla wielomianów.