Przeskocz do treści

Delta mi!

  1. obrazek

    Wikipedia

    Rozeta z kościoła St-Jean-de-Malte w Aix-en-Provence

    Wikipedia

    Rozeta z kościoła St-Jean-de-Malte w Aix-en-Provence

    Planimetria Mała Delta

    Rozety

    Jednym z najbardziej charakterystycznych elementów architektury średniowiecznej, zwłaszcza gotyckiej, są rozety. Są to okrągłe okna z delikatną konstrukcją kamienną, których puste przestrzenie są najczęściej wypełnione witrażami. Pierwsze rozety pojawiają się już w kościołach romańskich; zamiast witrażami są wypełnione cienkimi płytkami kamiennymi, przepuszczającymi światło.

  2. Gry, zagadki, paradoksy

    Gra Grim i twierdzenie Sprague’a–Grundy’ego

    Pewnie część czytelników Delty zna grę Nim – zarówno jej zasady, jak i właściwą dla niej strategię wygrywającą. W tym artykule chcemy przedstawić inną grę grafową. Grę o prostych zasadach, ale trudniejszą niż Nim do dokładnego przeanalizowania.  grą jest – stworzony przez Jamie Peabody i Karen Willis – Grim. Podamy efektywny sposób orzekania, który gracz ma strategię wygrywającą. Co najciekawsze, można go zastosować do szerokiej klasy tego typu gier dwuosobowych, zawierającej Grima i Nima.

  3. Rachunek prawdopodobieństwa

    Rekordy długowieczności i procesy Poissona II

    W pierwszej części artykułu szukaliśmy prawdopodobieństwa tego, że umierający człowiek będzie starszy od wszystkich aktualnie żyjących. Zadanie wykonaliśmy. Obliczyliśmy interesujące nas prawdopodobieństwo. Pozwólmy sobie teraz na kilka komentarzy i dygresji. Przypomnijmy najważniejszy wynik pomocniczy, który udowodniliśmy przed miesiącem.

  4. Rachunek prawdopodobieństwa

    Szczęście w zbiorach mierzalnych

    Wyobraźmy sobie następującą grę. Mamy planszę o polach ponumerowanych od 0 do 100 i dwa pionki, stojące na początku na polu o numerze 0. Gracze wykonują ruchy na przemian. Gracz rzuca monetą i jeśli wypadnie reszka, to przesuwa swój pionek o 1 pole, a jeśli orzeł – o 5 pól. Wygrywa ten, kto pierwszy dojdzie do pola o numerze 100.

  5. Teoria liczb

    Jaki jest następny wyraz tego ciągu?

    3, 7, 31, 211, 2311, ... – jaki jest następny wyraz tego ciągu? Jakiś czas temu taka zagadka pojawiła się na jednej z polskich rozrywkowych stron internetowych. Niemal od razu w komentarzach pod nią rozpoczął się spór o poprawne, prawdziwe rozwiązanie. Czytelnik zapewne zechce podjąć wyzwanie samodzielnego odnalezienia następnego elementu ciągu i jego ogólnej reguły. Zatem zatrzymajmy się tu i pozwólmy sobie na chwilę namysłu; w dalszej części tekstu pojawi się rozwiązanie (autorowi niniejszego tekstu zajęło kilka dłuższych chwil znalezienie formuły).

  6. Stereometria Drobiazgi

    Piłka w puszce

    Piłki tenisowe na ogół pakowane są w rurkę po kilka sztuk. Wyobraźmy sobie piłki tak cenne, że pakowane są każda oddzielnie. Takie opakowanie to z matematycznego punktu widzenia walec...

  7. Teoria liczb Mała Delta

    Kraina dwóch monet

    Wyobraźmy sobie, że trafiliśmy do dziwnego kraju, w którym jedynymi dostępnymi środkami płatniczymi są monety o nominałach 5 i 9. Formy płatności nie rozwinęły się na tyle, żeby płacić kartą lub czekiem, na domiar złego wybraliśmy się do cukierni, w której kasa jest zupełnie pusta i sprzedawca nie może wydać nam reszty...

  8. Planimetria

    Kosmiczne jaja

    Ruch obiegowy Ziemi wokół Słońca przy stałym kierunku osi obrotu planety i nachyleniu do płaszczyzny orbity sprawia, że w ziemskiej pogodzie pojawiają się cyklicznie pory roku. Obecnie promienie słoneczne padają na północną półkulę pod coraz większym kątem, średnia temperatura rośnie, dzień staje się dłuższy, a noc krótsza, co naturalnie skłania do rozważań o odchodzącej zimie i odradzającym się z nadchodzącą wiosną życiu. Zadziwiające, że jednym z wykorzystywanych przez praktycznie wszystkie kultury symbolem wiosny i nowego życia jest jajo...

  9. obrazek

    Rys. 1

    Rys. 1

    Algorytmy

    Bardzo oszczędne drzewa (I)

    Wiele struktur danych w komputerze można reprezentować w postaci drzewa binarnego. Aby przechować takie drzewo w pamięci komputera, należy dla każdego węzła zapamiętać numer jego lewego i prawego syna oraz, jeśli to potrzebne, numer węzła będącego jego ojcem. Wystarczą nam do tego trzy tablice.

  10. Analiza

    Człapanie do nieskończoności

    Matematyka, jak przystało na królową nauk, jest dyscypliną dość trudną i wymagającą umiejętności abstrakcyjnego myślenia. Jeżeli przyjąć za Galileuszem, że matematyka jest alfabetem, za pomocą którego Bóg opisał wszechświat, to trzeba przyznać, że jest to alfabet dość złożony i nie jest łatwo nauczyć się dobrze nim posługiwać. Jednym z jego ważniejszych elementów jest niewątpliwie nieskończoność.

  11. Stereometria Deltoid

    Postaw na krawędzi!

    Postawmy czworościan na krawędzi i przez każdą jego krawędź poprowadźmy płaszczyznę równoległą do przeciwległej krawędzi. Takich sześć płaszczyzn wyznacza równoległościan opisany na czworościanie.

  12. Planimetria Mała Delta

    Samą linijką można nakreślić okrąg...

    ...jeśli ma się 5 jego punktów. No, może trochę przesadziłem... Okręgu tak dosłownie nakreślić nie można, ale można narysować jego kolejnych kilka punktów, nawet gdy te kilka to np. 100 -- oczywiście, im większa będzie to liczba, tym dłużej będzie to trwało, bo rysować będziemy te punkty kolejno, po jednym.