-
-
Niewymierność i jeszcze większe niemożliwości
Punktem wyjścia niech będzie najsłynniejsza chyba matematyczna konstatacja, ta mianowicie, że liczba jest niewymierna...
-
Rozety
Jednym z najbardziej charakterystycznych elementów architektury średniowiecznej, zwłaszcza gotyckiej, są rozety. Są to okrągłe okna z delikatną konstrukcją kamienną, których puste przestrzenie są najczęściej wypełnione witrażami. Pierwsze rozety pojawiają się już w kościołach romańskich; zamiast witrażami są wypełnione cienkimi płytkami kamiennymi, przepuszczającymi światło.
-
Połowa równoległoboku
-
Gra Grim i twierdzenie Sprague’a–Grundy’ego
Pewnie część czytelników Delty zna grę Nim – zarówno jej zasady, jak i właściwą dla niej strategię wygrywającą. W tym artykule chcemy przedstawić inną grę grafową. Grę o prostych zasadach, ale trudniejszą niż Nim do dokładnego przeanalizowania. Tą grą jest – stworzony przez Jamie Peabody i Karen Willis – Grim. Podamy efektywny sposób orzekania, który gracz ma strategię wygrywającą. Co najciekawsze, można go zastosować do szerokiej klasy tego typu gier dwuosobowych, zawierającej Grima i Nima.
-
Rekordy długowieczności i procesy Poissona II
W pierwszej części artykułu szukaliśmy prawdopodobieństwa tego, że umierający człowiek będzie starszy od wszystkich aktualnie żyjących. Zadanie wykonaliśmy. Obliczyliśmy interesujące nas prawdopodobieństwo. Pozwólmy sobie teraz na kilka komentarzy i dygresji. Przypomnijmy najważniejszy wynik pomocniczy, który udowodniliśmy przed miesiącem.
-
Szczęście w zbiorach mierzalnych
Wyobraźmy sobie następującą grę. Mamy planszę o polach ponumerowanych od 0 do 100 i dwa pionki, stojące na początku na polu o numerze 0. Gracze wykonują ruchy na przemian. Gracz rzuca monetą i jeśli wypadnie reszka, to przesuwa swój pionek o 1 pole, a jeśli orzeł – o 5 pól. Wygrywa ten, kto pierwszy dojdzie do pola o numerze 100.
-
Jaki jest następny wyraz tego ciągu?
3, 7, 31, 211, 2311, ... – jaki jest następny wyraz tego ciągu? Jakiś czas temu taka zagadka pojawiła się na jednej z polskich rozrywkowych stron internetowych. Niemal od razu w komentarzach pod nią rozpoczął się spór o poprawne, prawdziwe rozwiązanie. Czytelnik zapewne zechce podjąć wyzwanie samodzielnego odnalezienia następnego elementu ciągu i jego ogólnej reguły. Zatem zatrzymajmy się tu i pozwólmy sobie na chwilę namysłu; w dalszej części tekstu pojawi się rozwiązanie (autorowi niniejszego tekstu zajęło kilka dłuższych chwil znalezienie formuły).
-
Kto by się spodziewał
Kto by się spodziewał, że prawdziwe jest stwierdzenie: jeśli w sześcianie mieszczą się trzy jednakowe kulki, to zmieści się też czwarta tej samej wielkości!
-
Piłka w puszce
Piłki tenisowe na ogół pakowane są w rurkę po kilka sztuk. Wyobraźmy sobie piłki tak cenne, że pakowane są każda oddzielnie. Takie opakowanie to z matematycznego punktu widzenia walec...
-
Bardzo oszczędne drzewa (II)
Skoro dotychczas szło nam tak dobrze, spróbujmy pójść za ciosem i zaproponować bardzo oszczędną reprezentację drzew już niekoniecznie binarnych (ale wciąż ukorzenionych)...
-
Kraina dwóch monet
Wyobraźmy sobie, że trafiliśmy do dziwnego kraju, w którym jedynymi dostępnymi środkami płatniczymi są monety o nominałach 5 i 9. Formy płatności nie rozwinęły się na tyle, żeby płacić kartą lub czekiem, na domiar złego wybraliśmy się do cukierni, w której kasa jest zupełnie pusta i sprzedawca nie może wydać nam reszty...
-
Kosmiczne jaja
Ruch obiegowy Ziemi wokół Słońca przy stałym kierunku osi obrotu planety i nachyleniu do płaszczyzny orbity sprawia, że w ziemskiej pogodzie pojawiają się cyklicznie pory roku. Obecnie promienie słoneczne padają na północną półkulę pod coraz większym kątem, średnia temperatura rośnie, dzień staje się dłuższy, a noc krótsza, co naturalnie skłania do rozważań o odchodzącej zimie i odradzającym się z nadchodzącą wiosną życiu. Zadziwiające, że jednym z wykorzystywanych przez praktycznie wszystkie kultury symbolem wiosny i nowego życia jest jajo...
-
Rekordy długowieczności i procesy Poissona
-
Bardzo oszczędne drzewa (I)
Wiele struktur danych w komputerze można reprezentować w postaci drzewa binarnego. Aby przechować takie drzewo w pamięci komputera, należy dla każdego węzła zapamiętać numer jego lewego i prawego syna oraz, jeśli to potrzebne, numer węzła będącego jego ojcem. Wystarczą nam do tego trzy tablice.
-
Człapanie do nieskończoności
Matematyka, jak przystało na królową nauk, jest dyscypliną dość trudną i wymagającą umiejętności abstrakcyjnego myślenia. Jeżeli przyjąć za Galileuszem, że matematyka jest alfabetem, za pomocą którego Bóg opisał wszechświat, to trzeba przyznać, że jest to alfabet dość złożony i nie jest łatwo nauczyć się dobrze nim posługiwać. Jednym z jego ważniejszych elementów jest niewątpliwie nieskończoność.
-
Heron uogólniony?
Wzór Herona pozwala wyznaczyć pole trójkąta w zależności od długości jego boków ( to połowa obwodu). Czy da się go uogólnić, na przykład dla objętości czworościanu lub pola czworokąta?
-
Postaw na krawędzi!
Postawmy czworościan na krawędzi i przez każdą jego krawędź poprowadźmy płaszczyznę równoległą do przeciwległej krawędzi. Takich sześć płaszczyzn wyznacza równoległościan opisany na czworościanie.
-
Samą linijką można nakreślić okrąg...
...jeśli ma się 5 jego punktów. No, może trochę przesadziłem... Okręgu tak dosłownie nakreślić nie można, ale można narysować jego kolejnych kilka punktów, nawet gdy te kilka to np. 100 -- oczywiście, im większa będzie to liczba, tym dłużej będzie to trwało, bo rysować będziemy te punkty kolejno, po jednym.
-
Istnienie
Gdy chcemy coś badać, rozsądnie jest upewnić się, że to coś istnieje...