Przeskocz do treści

Delta mi!

  1. Topologia

    Elementarnie o twierdzeniu Brouwera

    Tytułowe twierdzenie sformułujemy dla trójkąta (z brzegiem) na płaszczyźnie euklidesowej  2 R : Jest to najsłynniejsze i najważniejsze twierdzenie w topologicznej teorii punktów stałych o rozlicznych zastosowaniach (w równaniach różniczkowych, topologii, ekonomii, teorii gier, analizie funkcjonalnej). Jego odkrycie miało ogromny wpływ na rozwój wielu gałęzi matematyki, szczególnie topologii algebraicznej.

  2. Kryptologia Nowości z przeszłości

    Uniwersalny szyfr

    W naszych czasach coraz więcej rzeczy staje się tajnych. To dlatego, że nasze życie jest coraz bardziej uzależnione od setek i tysięcy drobiazgów, a kontrolę nad nimi każdy chce zachować dla siebie. Przyjdzie może czas, kiedy na posiadanie tablic logarytmicznych wymagane będzie zezwolenie. Żarty? Mam nadzieję. Na razie grozi nam utajnienie tablic rozkładów liczb na czynniki pierwsze. A oto dlaczego...

  3. Algebra

    Podróże w Rd

    ... Uważam, że jednostronnicowy dowód Sergeya Sevastianova jest wyjątkowy. Pál Erdős często odwoływał się do Księgi, w której Bóg trzyma wszystkie najelegantsze dowody. Zainspirowani tym matematycy, Aigner i Ziegler, wydali znakomitą książkę Dowody z Księgi, którą wszystkim szczerze polecam. Dowód Sevastianova mógłby również trafić do tej Księgi. Mimo że ja i moi koledzy rozumiemy każdy krok tego dowodu z osobna, to nie wiemy, skąd bierze się taki sposób rozumowania, niespotykany nigdzie indziej w naszej dziedzinie. Wierzę, że zrozumienie idei ukrytych w tym dowodzie może przyczynić się do kolejnych ciekawych wyników. Kto wie, może ktoś z Czytelników pomoże?

  4. obrazek

    Leonardo Fibonacci (1170-1240)

    Leonardo Fibonacci (1170-1240)

    Teoria liczb Rachunki

    Fibonacci spotyka Banacha

    Fibonacci (właściwie Leonardo z Pizy, ok. 1170-1240) nauczył się zasad arytmetyki hindusko-arabskiej, gdy razem z ojcem przebywał w Bougie (obecnie algierska Bidżaja). Poszerzał swoją wiedzę podczas podróży do Egiptu, Syrii, Grecji, na Sycylię, do Prowansji. Gdy osiadł w Pizie, w 1202 roku napisał traktat Liber Abaci (Księga rachunków), z myślą o rozpowszechnieniu w Europie notacji dziesiętnej opartej na wykorzystaniu cyfr 0,1,2, ...,9. Pokazał w nim użyteczność nowych metod na wielu przykładach rachunkowych, szczególnie związanych z przeliczaniem miar i wag, obliczaniem zysków i odsetek, wymianą pieniędzy...

  5. Teoria liczb

    Ziemiolubne liczby i ulotne reszty

    Człowiek twardo stąpa po ziemi, a z nim pojęcia, które stworzył. Na przykład liczby są tylko tym, do czego człowiekowi służą: porządkowe, kardynalne i inne. W skończonych zastosowaniach są to liczby naturalne 1, 2, 3, ... i ich uogólnienia: liczby całkowite, wymierne, rzeczywiste i zespolone. Słowo skończone w poprzednim zdaniu odnosi się wyłącznie do opisywanego atrybutu liczonego obiektu: a to jego rangi, a to mocy, a to fizycznych rozmiarów. W matematyce teoretycznej liczb praktycznie zawsze potrzebujemy nieskończenie wiele!

  6. obrazek

    Stereometria

    Czego jeszcze nie wiedzieliśmy o bryłach platońskich?

    "Bryły platońskie" to inna nazwa wielościanów foremnych. W przestrzeni trójwymiarowej jest ich dokładnie 5 i są to: czworościan, sześcian, ośmiościan, dwunastościan oraz dwudziestościan foremny. Ich historia sięga czasów starożytnych i wydawałoby się, że po ponad dwóch tysiącach lat wiemy o nich już absolutnie wszystko.

  7. Stereometria

    Wierzchołki, krawędzie, ściany i dalej

    Zajmijmy się następującym prostym problemem. Niech P będzie wielościanem wypukłym o trójkątnych ścianach. Oznaczmy przez V;E; F odpowiednio liczbę jego wierzchołków, krawędzi i ścian. Jakie trójki (V; E;F ) liczb naturalnych możemy w ten sposób uzyskać? Bez trudu możemy wypisać dwie równości:

    V − E + F = 2; 3F = 2E:
  8. Analiza

    Indukcja przyrodnicza

    Tak zwana zasada indukcji przyrodniczej mówi: Gdy masz podejrzenie, że znalazłeś ogólny wzór, który działa dla każdej liczby naturalnej, to sprawdź go dla pierwszych paru wartości i dla jakiejś większej: jak wzór się zgadza, to zgadza się dla każdej liczby naturalnej...

  9. obrazek

    Fot. Wiesław Szlenk

    Stanisław Mazur i Per Enflo (1972)
    Zdjęcie można znaleźć w książce Kazimierza Kuratowskiego "Pół wieku matematyki polskiej 1920-1970" wydanej przez Książkę i Wiedzę w 1973 roku

    Fot. Wiesław Szlenk

    Stanisław Mazur i Per Enflo (1972)
    Zdjęcie można znaleźć w książce Kazimierza Kuratowskiego "Pół wieku matematyki polskiej 1920-1970" wydanej przez Książkę i Wiedzę w 1973 roku

    Historia i filozofia nauk

    Problem 153. z Księgi Szkockiej

    6 listopada 1936 roku Stanisław Mazur postawił pewien problem dotyczący analizy funkcjonalnej. Za jego rozwiązanie obiecał ofiarować żywą gęś. W 1972 roku w Warszawie gęś odebrał szwedzki matematyk Per Enflo...

  10. Geometrie nieeuklidesowe Mała Delta

    Płaszczyzna hiperboliczna szydełkiem

    Stworzenie papierowego modelu płaszczyzny hiperbolicznej, o czym piszemy w tym numerze Delty, wymaga nieco umiejętności manualnych. Papierowy model, niestety, ma bardzo poważną wadę: jest podatny na uszkodzenia. Dlatego prezentujemy konkurencyjny sposób produkcji płaszczyzny hiperbolicznej, zaproponowany po raz pierwszy przez Dainę Taiminę w 2001 roku. Pani Taimina, obserwując uczestników warsztatów, jak cierpliwie łączą papier taśmą klejącą, wymyśliła sposób na porządną i trwałą płaszczyznę hiperboliczną. Ten sposób wymaga szydełka, podstawowej umiejętności liczenia i znajomości zaledwie dwóch ściegów: łańcuszka i półsłupka.

  11. obrazek

    Geometrie nieeuklidesowe Mała Delta

    Płaszczyzna hiperboliczna z papieru

    Od czasów starożytnych Greków wiadomo, że jest pięć brył foremnych: czworościan, sześcian, ośmiościan, dwunastościan i dwudziestościan. W każdym wierzchołku może się spotkać 3, 4 lub 5 trójkątów, 3 czworokąty lub 3 pięciokąty. Dużo później skompletowano wielościany półforemne, jednak i tu w żadnym z nich nie pojawia się siedmiokąt. Spróbujmy dać mu szansę...

  12. Teoria liczb

    Dyskretny Darboux

    Każda funkcja ciągła określona na zbiorze liczb rzeczywistych ma własność Darboux, tzn. jeśli dla pewnych x i y mamy f (x) = a i |f (y) = b; to w przedziale (x;y ) są przyjmowane wszystkie wartości między a i b: Jest to bardzo skuteczne narzędzie do rozwiązywania wielu zadań z analizy matematycznej. Okazuje się, że podobny motyw możemy zaobserwować także w zadaniach dotyczących liczb całkowitych...