Przeskocz do treści

Delta mi!

  1. Topologia

    Twierdzenie o naszyjniku

    Uczciwi złodzieje powinni umieć się dzielić. Oczywiście, dzielić się łupami z innymi uczciwymi złodziejami, którzy pomagali w dokonaniu kradzieży. Można sobie wyobrazić, że taka uczciwość powoduje czasem pewne trudności, gdyż niektóre precjoza mogą być nieskore do podziału. Dla przykładu...

  2. obrazek

    Rys. 1

    Rys. 1

    Planimetria

    O ortocentrach i parabolach, a zwłaszcza o twierdzeniu odwrotnym Steinera

    W Delcie 11/2017 został przedstawiony (bez dowodu) fakt, że dla czterech dowolnych prostych (tak dowolnych, że są parami nierównoległe i żadne trzy nie mają punktu wspólnego) ortocentra wyznaczonych przez nie czterech trójkątów leżą na jednej prostej, a okręgi opisane na tych trójkątach mają punkt wspólny. Ponadto parabola, której kierownicą jest prosta zawierająca ortocentra, a ogniskiem punkt wspólny okręgów opisanych jest styczna do czterech wyjściowych prostych (Rys. 1).

  3. Algebra

    Ile jest podprzestrzeni?

    Jaka jest liczba różnych k -elementowych podzbiorów zbioru n -elementowego? Jest to jedno z pierwszych pytań, które zadajemy sobie, zaczynając zajmować się elementarną kombinatoryką. Wkrótce dowiadujemy się, że liczbę tę oznacza się przez (nk) (symbol Newtona), a następnie poznajemy różne metody jej wyznaczania. Wyjściowe pytanie o liczbę podzbiorów przeniesiemy na nieco wyższy poziom abstrakcji, zmieniając w nim kilka pojęć...

  4. obrazek

    Typowe (regularne) poziomice zaznaczone są na szaro, a nietypowe (osobliwe) na kolorowo.

    Typowe (regularne) poziomice zaznaczone są na szaro, a nietypowe (osobliwe) na kolorowo.

    Topologia

    Topologia na Antypodach

    Mapa obok przedstawia rejon Giewontu i Kopy Kondrackiej. Typowa poziomica jest albo pusta (np. nie ma żadnych punktów na wysokości 2500 m), albo składa się z jednej lub więcej składowych, z których każda jest albo zamkniętą pętlą (jak ta wokół Giewontu, 1800 m), albo krzywą o dwóch końcach na brzegu mapy (np. te powyżej dolin Małej Łąki i Kondratowej, 1600 m). Może się jednak zdarzyć, że poziomica jest osobliwa - na wysokości 1894 m mamy izolowany punkt (szczyt Giewontu), a na 1725 m przecięcie w kształcie litery X (Kondracka Przełęcz). Są to jednak pojedyncze przypadki - jak szczyt, przełęcz albo dno kotła - a wszystkie pozostałe poziomice są regularne.

  5. obrazek

    Punkty D, E, F to środki boków, X, X', Y, Y', Z, Z' oznaczają pola.

    Punkty D, E, F to środki boków, X, X', Y, Y', Z, Z' oznaczają pola.

    Planimetria Deltoid

    Środkowe i pola

    Środkowa trójkąta to odcinek łączący wierzchołek ze środkiem przeciwległego boku. Środkowe przecinają się w jednym punkcie, zwanym środkiem ciężkości i dzieli on każdą z nich w stosunku |2 1; licząc od wierzchołka trójkąta (rys. obok).

  6. Sztuczna inteligencja Nowe pomysły

    Przyszłość sztucznej inteligencji

    W 1970 roku jeden z pionierów sztucznej inteligencji, Marvin Minsky, napisał na łamach Life Magazine, że w ciągu 8 lat pojawią się maszyny o inteligencji porównywalnej z ludzką lub ją przewyższające. Jednak takie maszyny nie pojawiły się ani do roku 1978, ani przez kolejne 40 lat. A jednak w ciągu ostatnich lat można zobaczyć znaczne przyspieszenie w dziedzinie sztucznej inteligencji: autonomiczne samochody, programy wygrywające z ludzkimi arcymistrzami w Go - ostatnią grę, w którą człowiek dotychczas był lepszy, czy roboty humanoidalne śmiało przemierzające gruzowiska. Być może prognoza Minskiego, choć znacznie opóźniona, ziści się na naszych oczach?

  7. obrazek

    Rys. 1 Możliwe ruchy ciemnoszarego pionka

    Rys. 1 Możliwe ruchy ciemnoszarego pionka

    Gry, zagadki, paradoksy

    1, 2, 3, 4, ...

    Conway's Soldiers to jednoosobowa łamigłówka, w której żołnierze (pionki) przedostają się na terytorium wroga i chcą wkroczyć jak najdalej. Na nieskończonej szachownicy, z zaznaczoną "na środku" poziomą granicą, pionki przeskakują jeden nad drugim. Dokładniej: ruch polega na przeskoczeniu pionkiem nad innym znajdującym się na sąsiadującym polu - tylko poziomo lub pionowo - i zdjęciu pionka, który został przeskoczony.

  8. Kryptologia

    Krzywe eliptyczne w kryptografii

    Tak zwana "kryptografia krzywych eliptycznych" to bardzo modne i popularne pojęcie, które rzeczywiście jest ważne, ale - niestety - o którym mówi się najczęściej niezwykle powierzchownie, bez wchodzenia w "detale matematyczne". Niniejszy artykuł próbuje pójść takiemu podejściu pod prąd - chcemy w elementarny sposób objaśnić, o co tak naprawdę chodzi z tymi krzywymi eliptycznymi.

  9. Statystyka Deltoid

    Nieprawdopodobne!

    Zagadnienia związane z prawdopodobieństwem i statystyką bywają zaskakujące i nieintuicyjne. Zdarza się też często, że okazują się one znacznie łatwiejsze niż się na pierwszy rzut oka wydaje.

  10. Rachunek prawdopodobieństwa

    Ostatni Mohikanin

    Zacznijmy od następującego zadania: dwunastu Indian (dla ustalenia uwagi i zgrabności tytułu przyjmijmy, że pochodzą oni z plemienia Mohikanów) siedzi dookoła ogniska i pali fajkę pokoju. Procedura rozpoczyna się rzecz jasna od Wodza, który po zapaleniu rzuca zdobytą od bladych twarzy symetryczną monetą i w zależności od wyniku podaje fajkę na lewo albo na prawo. Kolejny Indianin robi to samo - pali faję, rzuca monetą i podaje dalej (fajkę, nie monetę). Nietrudno uwierzyć, że prędzej czy później fajka wpadnie w ręce ostatniego Indianina, który jej wcześniej nie palił (będzie to tytułowy ostatni Mohikanin)...

  11. Analiza

    Niewąskie nierówności

    Nierówności między średnimi, a w szczególności nierówność między średnią arytmetyczną i geometryczną (oznaczana dalej A-G), to jedne z podstawowych narzędzi dowodowych w arsenale każdego olimpijczyka...