Przeskocz do treści

Delta mi!

  1. Rachunek prawdopodobieństwa

    Trzy karty - o paradoksie Monty’ego Halla nieco inaczej

    Na stole leżą, ułożone w losowej kolejności koszulkami do góry, trzy karty: As, Król i Dama. Jeżeli gracz odgadnie prawidłowo położenie Asa, wygrywa dużą nagrodę. Gracz wskazał kartę, nie obejrzał jej, i wtedy prowadzący grę mówi: Chwileczkę. Odkryję jedną z dwóch pozostałych kart, a ty się zastanów, czy chcesz zmienić swoją kartę na kartę, która pozostała nieodkryta.

  2. obrazek

    Geometria Mała Delta

    Z żabami przez symetrię

    Chyba każdy patrzył kiedyś w kalejdoskop - prostokątne lustra odbijające różnobarwne wzory powstałe z przesypujących się koralików. Nie znam nikogo, kto mając w ręku owo urządzenie, byłby w stanie powstrzymać się przed choćby najmniejszym obróceniem nim i zerknięciem przez małe oczko na otrzymany efekt. A gdyby odwrócić sytuację i zbadać, jak zmieni się obraz, gdy zamiast koralikami poruszymy lustrami znajdującymi się w kalejdoskopie? Zacznijmy od wyprawy do szklarza i wyboru bohatera kalejdoskopowych przygód - po starannym castingu wygrywa żaba.

  3. Astrofizyka

    Sztuczna inteligencja w astrofizyce

    W swojej pracy astronomowie często korzystają z katalogów będących wynikiem wielkich przeglądów nieba. Zebrane w nich dane poddawane są różnorakim analizom. Ważne jest przy tym, aby katalogi charakteryzowały się jak największą kompletnością i jednorodnością. Niejednokrotnie podczas analizy statystycznej dobrze poznanych typów obiektów wykrywane są źródła rzadko spotykane lub wykazujące niezwykłe zachowanie. Dlatego też odpowiedni sposób klasyfikacji obserwowanych obiektów jest bardzo istotnym, o ile nie najistotniejszym krokiem, który należy wykonać przed przystąpieniem do zaawansowanego badania właściwości fizycznych obserwowanych obiektów niebieskich.

  4. Gry, zagadki, paradoksy Mała Delta

    Sprawiedliwa, czy niesprawiedliwa?

    Rzucamy monetą. Jeśli wypadnie orzeł - wygrywam ja, jeśli reszka - wygrywa mój przeciwnik. Czy jest to gra sprawiedliwa? Uważam, że tak. A oto inna gra. Rzucamy kostką do gry. Jeśli wypadnie szóstka - wygrywa mój przeciwnik, jeśli co innego - wygrywam ja. W moim odczuciu ta gra jest niesprawiedliwa, niekorzystna dla mojego przeciwnika. Czy zgadzacie się ze mną? Jeśli tak, to w porządku, rozumiemy się doskonale...

  5. Stereometria Nowości z przeszłości

    Jeszcze raz o wzorze Eulera, czyli zastosowanie stawów i grobli w stereometrii

    W 1752 roku znakomity matematyk szwajcarski Euler, podówczas profesor Akademii Nauk w Berlinie, odkrył zadziwiający związek między liczbami |s;k;w ścian, krawędzi i wierzchołków dowolnego wielościanu wypukłego |W: Związek ten jest obecnie nazywany wzorem Eulera dla wielościanów i zwykle zapisuje się go w postaci

    s − k + w = 2:

    Podamy elementarny i chyba nader zabawny dowód tego wzoru.

  6. obrazek

    Teoria liczb

    Na tropie liczb gradowych

    W matematycznym świecie od zawsze znajdowało się mnóstwo tajemnic czekających na odkrycie. Tak zawiłych i zdradzieckich, że tylko szaleńcy mogli w ogóle wyobrazić sobie ich istnienie. Tymi szaleńcami byli nieustraszeni matematycy, którzy już od stuleci (jeżeli nie tysiącleci) szukają, rozwiązują i wyjaśniają zagadki, które większość ludzi już dawno uznawała za beznadziejne przypadki (lub są one tak abstrakcyjne, że w żaden sposób nieosiągalne).

  7. Zastosowania matematyki

    Fenomen rozkładu Benforda

    Większość osób świadomych powiązań między światem matematyki a rzeczywistością zgodzi się, że na każdym kroku spotykamy się z rachunkiem prawdopodobieństwa. Oprócz niektórym dobrze znanych zagadnień związanych z grami losowymi pewne prawidłowości probabilistyczne możemy spotkać również w bardziej niespodziewanych miejscach.

  8. Zastosowania matematyki

    Pierwsze cyfry

    Rozważmy następujący problem: gromadzimy powierzchnie wszystkich krajów wyrażone w kilometrach kwadratowych i patrzymy tylko na pierwsze cyfry znaczące tych wartości. Otrzymamy listę liczb z zakresu od 1 do 9 włącznie; pytanie brzmi, jakie są częstości ich występowania w tym zbiorze?

  9. Zastosowania matematyki Epidemie

    Szczepić czy nie szczepić? Oto jest pytanie

    Prawie co roku w sezonie grypowym w mediach pojawia się temat szczepień. Omawiane są różne aspekty, podawane argumenty za i przeciw szczepieniom, często obserwujemy więcej emocji niż racjonalizmu. Epidemie, a w szczególności pandemie, stanowią przedmiot badań od wielu lat ze względu na swój znaczący wpływ na rozwój populacji ludzkiej. Zarówno w starożytności, jak i w średniowieczu, a także już w czasach współczesnych różnego typu choroby, takie jak dżuma, tyfus, cholera, grypa, dziesiątkowały mieszkańców naszego globu.

  10. Algebra

    O grupie warkoczy

    Grupa warkoczy była rozważana po raz pierwszy przez Adolfa Hurwitza w roku 1885, jednak nie pod tą nazwą; w grupie rozważanej przez Hurwitza trudno było dopatrzyć się warkoczy. Nazwę wprowadził Emil Artin w roku 1925, bo w jego interpretacji elementy grupy kojarzą się z warkoczami. Przypomnę, jak się je zaplata...

  11. Stereometria Deltoid

    w - k + s = 2

    Oznaczmy przez w ;k;s liczby odpowiednio wierzchołków, krawędzi i ścian wielościanu. W każdym wierzchołku schodzą się co najmniej trzy końce krawędzi i każda krawędź ma dwa końce, zatem |2k ⩾ 3w : Podobnie każda ściana ma co najmniej trzy boki, a każda krawędź należy do dwóch ścian, więc 2k ⩾ 3s: Ponadto jeśli wielościan jest wypukły, zachodzi wzór Eulera: w −k + s = 2:

  12. Teoria liczb

    Matematyka jest jedna: Magia liczb

    Dotarliśmy do ostatniej części cyklu, w którym prezentujemy wybrane przykłady zaskakujących relacji pomiędzy różnymi, pozornie bardzo odległymi, obszarami matematyki. Nie wypada jednak zakończyć bez poświęcenia należytej uwagi dziedzinie teorii liczb. Jak bowiem matematyka nazywana jest często królową nauk, tak o teorii liczb mówi się często jako o królowej matematyki. A królowa ma, oczywiście, wielu służących.

  13. Geometria Co to jest?

    Iloczyn skalarny

    Jednym z podstawowych wzorów trygonometrycznych jest twierdzenie kosinusów podające zależność między bokami trójkąta a jednym z jego kątów:  2 2 2 c = a + b − 2ab cosC: Na formułę tę można patrzeć jako na uogólnienie twierdzenia Pitagorasa (do którego sprowadza się, gdy kąt C jest prosty, czyli cosC = 0):