Przeskocz do treści

Delta mi!

  1. Zastosowania matematyki

    „Co jest grane” w dylematach społecznych

    Dylemat społeczny to sytuacja grupy ludzi, w której interes jednostki nie jest zbieżny z interesem grupy - występuje konflikt między interesem prywatnym a zbiorowym. Charakteryzuje się tym, że jeżeli członkowie grupy postąpią zgodnie ze swoimi indywidualnymi interesami, to zyskają mniej, niż gdyby brali przede wszystkim pod uwagę w swoich działaniach interes grupy. Jeżeli jednak wszyscy mieliby postąpić zgodnie z interesem grupy, to osoba, która jako jedyna zmieni decyzję i postąpi zgodnie ze swoim indywidualnym interesem, zyska więcej, niż gdyby działała zgodnie z interesem grupy.

  2. Zastosowania matematyki

    O spinach i genach

    Czego można się nauczyć, studiując na Wydziale Matematyki, Informatyki i Mechaniki UW?
    Odpowiedź krótka: wszystkiego tego, co można sformułować precyzyjnie w języku matematyki, czyli wszystkiego.
    Odpowiedź praktyczna: tego, czym się zajmują nasi pracownicy - kilka przykładów przedstawimy w tym i następnych artykułach.

  3. Teoria liczb

    Wesołe liczby

    Czy jest coś weselszego na twarzy drugiego człowieka od jego uśmiechu? To w pewnym sensie filozoficzne pytanie potrafi wzbudzić wiele zainteresowania u każdego człowieka. Wszak każda osoba posiada swój własny kanon piękna oraz szczęścia...

  4. obrazek

    Planimetria Mała Delta

    Pozbądźmy się koła

    Dawno, dawno temu za górami, za lasami na Euklidesowych Równinach żyło sobie koło. Niezmiernie było dumne ze swej stałej szerokości. Chadzało ścieżkami, które miały szerokość równą jego średnicy, i jako jedyna figura zamieszkująca równiny mogło kręcić się przy tym jak szalone, stale podpierając obie krawędzie ścieżki.

  5. Rachunek prawdopodobieństwa

    Matematyka jest jedna: metoda probabilistyczna

    W pierwszej części cyklu (Delta 2/2015) mieliśmy okazję przyjrzeć się wybranym przykładom zaskakujących połączeń, z którymi możemy spotkać się w świecie matematyki. W drugiej części zapoznamy się z jednym z takich połączeń dużo dokładniej. Mowa tu o metodzie probabilistycznej, wiązanej często z nazwiskiem Paula Erdősa, który w trakcie swojej kariery naukowej korzystał z niej niezliczoną liczbę razy.

  6. Zastosowania matematyki

    Demokracja i (NP-)trudne problemy

    Podczas XXVII Kongresu Matematycznego, odbywającego się w Seulu między 13 a 21 sierpnia 2014 roku, prestiżową Nagrodę Nevanlinny (informatyczny odpowiednik Medalu Fieldsa) otrzymał pracujący w USA hinduski informatyk Subhash Khot. W laudacji poświęconej wynikom Khota jego mentor i współautor wielu prac, Sanjeev Arora, wspomniał o przełomowym wyniku uzyskanym przez profesora Uniwersytetu Warszawskiego, Krzysztofa Oleszkiewicza wraz z Elchananem Mosselem i Ryanem O'Donnellem...

  7. Zastosowania matematyki

    Modelowanie fikcji: inwazja zombie

    Najbardziej zachęcającym aspektem uprawiania matematyki (oczywiście, poza niezaprzeczalnym pięknem matematycznych teorii) jest jej szeroka gama zastosowań i olbrzymia efektywność w modelowaniu świata rzeczywistego. Popularne jest nawet określenie "niepojęta skuteczność matematyki" (np. w pracy E. Wignera pod tożsamym tytułem The Unreasonable Effectiveness of Mathematics in the Natural Sciences). Warto jednak pamiętać, że modelowanie matematyczne jest czymś więcej niż tylko wyjątkowo użytecznym młotkiem wbijającym kolejne gwoździe, na których opiera się nasze zrozumienie wszechświata. Dzięki matematyce możemy modelować nie tylko to, co jest rzeczywiste (w jakimkolwiek tego słowa znaczeniu), ale też wszystko, co tylko potrafimy sobie wyobrazić.

  8. obrazek

    Planimetria

    Krótka opowieść o symedianie

    Zechciejcie państwo wysłuchać dziś krótkiej opowieści z królestwa geometrii. Za siedmioma górami matematycznych podręczników, za siedmioma rzekami matematycznych równań, za siedmioma lasami matematycznych sprzeczności znajdowała się symediana. Dziś symediana ujrzy światło dzienne...

  9. Rachunek prawdopodobieństwa

    Skąd wiadomo, że moneta ma i orła, i reszkę?

    W Delcie 1/2015 Łukasz Rajkowski oszacował, kiedy należy spodziewać się końca świata. Narzędziem użytym w tej analizie było wnioskowanie bayesowskie. Nie od dziś wiadomo, że należy je stosować z odpowiednią ostrożnością oraz dbałością o założenia i interpretacje. Dlaczego? Zastanówmy się nad poniższym prostym przykładem, gdzie na użytek tych, którzy nie wyobrażają sobie prawdopodobieństwa bez kul w urnach lub rzutów monetą, został wykorzystany ten ostatni model.

  10. obrazek

    Geometria

    Próżny trud

    Jak wszystkim wiadomo, około -300 roku dyrektor Biblioteki Aleksandryjskiej imieniem Euklides napisał dzieło, które jest znane pod późniejszym łacińskim tytułem Elementy. W dziele tym z następujących pięciu postulatów wyprowadził całą geometrię (tę nauczaną w szkole i zwaną euklidesową) i całą arytmetykę.

  11. Analiza

    Gdzie tam znaczy też z powrotem

    Każda ptaszyna swym własnym głosem Pana Boga chwali. Tym przysłowiem odpowiedziałem podczas obrony pracy doktorskiej na pytanie Profesora Andrzeja Mostowskiego, czemu zbudowałem aksjomatykę geometrii eliptycznej, podczas gdy można tę geometrię uprawiać analitycznie (czyli rachunkowo)...

  12. obrazek

    Stereometria Co to jest?

    Sferostożki i inne cudaki

    Bryła to stworzenie, z którym większość z nas poznała się w szkole podstawowej i które było przez nas oswajane przez kolejne lata edukacji. Znamy bliżej różne rodziny brył, takie jak wielościany, graniastosłupy, bryły obrotowe, foremne, platońskie. Oczywiście, można produkować nowe stworzenia, łącząc czy tnąc "podstawowe" gatunki, a jedynym ograniczeniem jest nasza wyobraźnia.

  13. obrazek

    Katarzyna Wyrobek

    Gips

    Katarzyna Wyrobek

    Gips

    Stereometria

    Jak opisać kryształ?

    Kryształy to jedne z najbardziej osobliwych elementów świata przyrody. Materiały krystaliczne wykazują niemal niespotykaną naturalną tendencję do tworzenia wielościanów. Piętnastometrowe kryształy w Meksyku czy dwumilimetrowe kryształki soli w naszej kuchni - wszystkie swą szczególną postać zawdzięczają uporządkowanemu rozmieszczeniu atomów, jonów lub cząsteczek.

  14. Analiza

    Myśl logarytmicznie!

    W tym artykule ilustrujemy potęgę logarytmów w projektowaniu efektywnych algorytmów i obliczeń. Myślenie, w tle którego stoi logarytm, ukryty lub widoczny, nazwaliśmy myśleniem logarytmicznym. Stanowi ono jedną z podstawowych kompetencji niezbędnych przy efektywnym rozwiązywaniu rzeczywistych problemów informatycznych. Pokazujemy również - co może być ciekawe dla nauczycieli matematyki - jak wprowadzić pojęcie logarytmu, nie odwołując się do matematycznego formalizmu, a posługując się koncepcyjnym modelem redukcji rozmiaru problemu w każdym (lub w co drugim) kroku co najmniej o połowę. Może Cię zdziwić, że ta idea prowadząca do logarytmu występuje w algorytmie Euklidesa, który został opisany niemal 2000 lat przed wynalezieniem logarytmu przez Napiera.

  15. obrazek

    Zastosowania matematyki

    Równanie Naviera–Stokesa

    Rozważmy przepływ nieściśliwego płynu w pewnym obszarze math Załóżmy, że wiemy, jaka jest prędkość płynu w każdym punkcie obszaru, to znaczy że znamy pole prędkości, oznaczone math w chwili początkowej math Jak będzie wyglądało pole prędkości płynu math w dowolnym momencie math