Gra w sumo
Czy Czytelnik zna grę w przeciąganie liny? Dwie drużyny ciągną dwa końce liny w przeciwne strony, a wygrywa ta, której uda się przeciągnąć linę na swoją stronę. Ściślej, gra kończy się w momencie wyjścia środka liny (zazwyczaj oznaczonego wstążką) z umówionego pola gry. Matematycy przypisują tę samą nazwę podobnej grze rozgrywającej się w dwóch (i więcej) wymiarach, w której to środek liny może poruszać się w wielu kierunkach, a nie tylko lewo-prawo. Trudno sobie jednak takie przeciąganie wyobrazić, dlatego przyjąłem termin gra w sumo.
Plansza do gry w sumo (dalej oznaczana przez ) składa się z pewnej liczby pól na szachownicy. Każde pole szachownicy ma czterech sąsiadów, oznaczanych tutaj Pole nazwiemy wewnętrznym, jeśli leży na planszy razem ze swoimi sąsiadami, w przeciwnym przypadku nazwiemy je brzegowym. Zbiór pól wewnętrznych oznaczymy przez a brzegowych przez
Dwoje zawodników, Jaś i Małgosia, zaczyna grę na pewnym polu leżącym na planszy. Jeśli pole jest brzegowe, gra się kończy. W przeciwnym przypadku rzut symetryczną monetą decyduje, który z zawodników uzyskuje w tej turze przewagę nad przeciwnikiem, dzięki czemu przepycha go na wybrane przez siebie sąsiednie pole (i z rozpędu sam też tam ląduje). Gra toczy się w turach do momentu, gdy gracze wylądują na polu brzegowym.
Kto wygrywa? Podobnie jak w grze w przeciąganie liny, musimy się na coś umówić. Dojście do pewnych pól brzegowych będzie oznaczać wygraną Jasia, a do innych - Małgosi. Przyjętą umowę możemy opisać za pomocą jednej funkcji określonej wzorem
Przebieg gry jest więc zdeterminowany przez planszę funkcję rozstrzygnięcia decyzje zawodników, losowe wyniki rzutów monetą oraz wybór pola startowego.
W dalszej części artykułu przyjmiemy, że Jaś i Małgosia mają ustalone racjonalne strategie, czyli przy każdym przepchnięciu przeciwnika wybierają sąsiednie pole w taki sposób, by zmaksymalizować prawdopodobieństwo swojej wygranej. Jeśli dodatkowo ustalimy pole startowe to gra jest już czysto losowa i możemy określić warunkowe prawdopodobieństwo wygranej Małgosi:
W ten sposób otrzymaliśmy pewną funkcję Gdy jest polem brzegowym, gra kończy się już na starcie, a jej rozstrzygnięcie jest opisane funkcją a zatem Rozgrywka robi się ciekawsza, jeśli jest polem wewnętrznym. Z prawdopodobieństwem chwilową przewagę uzyska Małgosia i przepchnie Jasia na takie sąsiednie pole (gdzie ), dla którego prawdopodobieństwo przyszłej wygranej jest możliwie największe. Jeśli z kolei los padnie na Jasia, wybierze on takiego sąsiada dla którego jest najmniejsze. Ze wzoru na prawdopodobieństwo całkowite otrzymujemy więc
Dla dowolnej funkcji różnicę obu stron powyższej równości oznaczymy przez
Wyrażenie to jest nazywane dyskretnym operatorem -Laplace'a (chociaż Pierre-Simon de Laplace (1749-1827) nigdy takiego nie rozważał). Dotychczasowe rozważania możemy podsumować następująco - funkcja jest rozwiązaniem zagadnienia
(*) |
Do znalezienia rozwiązania wykorzystamy metodę noszącą imię Oskara Perrona ; noszącą bardzo słusznie, gdyż to jemu ją zawdzięczamy. Opiera się ona na własnościach funkcji spełniających nierówność zamiast równości. Są to tak zwane podrozwiązania, których rodzinę oznaczymy przez
Rodzina jest niepusta - należy do niej, na przykład, funkcja zerująca się na i równa funkcji na Ponadto wszystkie funkcje są ograniczone z góry przez co wynika z następującego faktu:
Wskazówka. Jeśli przyjmuje największą wartość dla pewnego pola to przyjmuje tę samą wartość również dla wszystkich pól sąsiednich.
Jesteśmy teraz gotowi zdefiniować rozwiązanie.
Twierdzenie 1 (o istnieniu). Funkcja określona wzorem
jest rozwiązaniem zagadnienia (*).
Dotychczasowe uwagi na temat rodziny pozwalają stwierdzić, że powyższy wzór jest poprawny, a ponadto dla wszystkich Narzuca się pytanie, czy znaleziona właśnie funkcja pokrywa się z rozważaną wcześniej funkcją opisującą prawdopodobieństwo wygranej. Poniższe zadanie rozwiewa tę wątpliwość.
Zadanie 2 (o jednoznaczność). Zagadnienie (*) ma tylko jedno rozwiązanie.
Wskazówka. Rozważyć dwa rozwiązania i powtórzyć rozumowanie z zadania 1 dla funkcji starannie dobierając punkt o ekstremalnych własnościach.
Dowód twierdzenia opiera się na dwóch wyjątkowych własnościach rodziny których samodzielne sprawdzenie nie powinno sprawić Czytelnikowi problemu.
Dowód twierdzenia. Równość dla wynika wprost z określenia i pozostaje nam sprawdzić równość ; ustalmy więc pole Z określenia wynika, że dla każdej liczby istnieje funkcja spełniająca Podobnie dla każdego sąsiedniego pola znajdziemy funkcję dla której Ich wspólne ograniczenie należy do rodziny na mocy zadania 3 oraz
Skonstruowana w zadaniu 4 funkcja również spełnia te nierówności, a ponadto dzięki mamy dla wszystkich W rezultacie
Porównanie liczb i (ta druga jest zerem!) przy użyciu nierówności trójkąta daje
Powyższa nierówność jest prawdziwa dla dowolnie małej liczby a więc zachodzi żądana równość
Zależnie od swojego filozoficznego usposobienia Czytelnik może być z tego dowodu zadowolony lub nie. Wykazaliśmy istnienie rozwiązania ale nie wyznaczyliśmy funkcji jawnym wzorem. Tę wadę ma zresztą większość metod stosowanych obecnie w równaniach różniczkowych cząstkowych, do których zagadnienie (*) zalicza się jako dyskretny odpowiednik.
Problem ten można częściowo obejść. Funkcja jest większa lub równa każdej funkcji więc stosując na przemian konstrukcje z zadań 3 i 4, możemy znaleźć coraz lepsze przybliżenia z dołu. Gdybyśmy natomiast w definicji rodziny zastosowali przeciwny znak nierówności (czyli ), to funkcję otrzymalibyśmy jako infimum tej rodziny, co pozwala znaleźć przybliżenia również z góry. W ten sposób możemy znaleźć wartości z dokładnością dwóch cyfr po przecinku dla planszy z rysunku 1 Warto zwrócić uwagę, że dopiero wtedy jesteśmy w stanie przeprowadzić symulacje naszej rozgrywki. O dziwo, w rzeczywistości zawodnicy sumo radzą sobie doskonale bez wykonywania takich obliczeń...