Geometria Bolyaia–Łobaczewskiego

Najdłużej badanym problemem matematycznym była kwadratura koła. Zaraz za nią uplasowała się kwestia piątego postulatu Euklidesa. Chodziło o to, czy zdanie "jeśli dwie proste przecięte trzecią tworzą kąty wewnętrzne jednostronne o sumie mniejszej od dwóch kątów prostych, to proste te po przedłużeniu przetną się i to właśnie z tej strony" spełnia wymagane dla postulatów warunki, czyli czy wyraża rzeczy jasne i oczywiste i czy jest dostatecznie zwięzłe, by być uznane za pierwotną prawdę. Debatę zapoczątkował w V wieku Proklos, odpowiadając dwukrotnie nie i proponując, by wykazać, że usunięcie tego postulatu gmachu geometrii nie naruszy.