Przeskocz do treści

pierwsza strona

Wydanie Delty - styczeń 2017 r.

Dowody i obliczenia

Witold Sadowski

o artykule ...

  • Publikacja w Delcie: styczeń 2017
  • Publikacja elektroniczna: 30 grudnia 2016
  • Autor: Witold Sadowski
    Afiliacja: Univerity of Bristol
  • Wersja do druku [application/pdf]: (133 KB)

Kilka miesięcy temu Marek Kordos zasugerował, że skoro napisałem już w Delcie 12/2014 o tym, czego o równaniu Naviera-Stokesa nie wiadomo, to może napisałbym też artykuł o tym, co z tym równaniem da się zrobić. Tak sformułowana oferta brzmi trochę jak "propozycja nie do odrzucenia", więc nieopatrznie obiecałem taki artykuł dostarczyć. Piszę "nieopatrznie", bo w momencie podjęcia zobowiązania nie uściśliliśmy, co powinienem rozumieć przez stwierdzenie da się zrobić. Czy chodzi o to, co da się udowodnić? Czy raczej o to, co daje się obliczyć?

artykuły

Astronomia

Fizyka

Elektryczność i magnetyzm

  1. Elektryczność i magnetyzm

    Co żarówka ma do cewki?

    Czasami pozornie proste sprzęty domowego użytku mogą dostarczyć ciekawych pytań dla fizyka. Na przykład: czy włókno żarówki zasilanej prądem zmiennym zmienia swoją temperaturę? Jeżeli tak, to ile wynosi amplituda tych zmian i jaką funkcją możemy opisać ich przebieg czasowy? Robi się jeszcze ciekawiej, gdy okazuje się, że problem ten można sprowadzić do zagadnienia analogicznego do przepływu prądu przez cewkę!

Struktura materii

Informatyka

Algorytmy

  1. Algorytmy Informatyczny kącik olimpijski

    Coś się popsuło

    W noworocznym kąciku omówimy zadanie Wykrywanie wrednej usterki pochodzące z zeszłorocznej Międzynarodowej Olimpiady Informatycznej, która odbyła się w Kazaniu (Rosja). Autorzy zadania oczekują od nas, że pomożemy zdiagnozować usterkę, która wkradła się do bazy danych zaimplementowaną przez niefrasobliwego inżyniera Ilszata.

Matematyka

Planimetria

  1. Planimetria Deltoid

    Czarno-białe mapy

    Słynne twierdzenie orzeka, że każdą mapę da się pomalować najwyżej czterema barwami. Oczywiście, zawsze należy malować tak, by sąsiadujące ze sobą państwa miały różne kolory. Są jednak mapy, dla których wystarczy mniej barw.

  2. Planimetria

    Uczniowie

    W 1967 roku szkoła podstawowa wypuściła po raz pierwszy absolwentów ośmioletniej podstawówki (tak, kiedyś też były reformy szkolne). W ogólnym reformatorskim zamieszaniu można było zrobić coś nietypowego, więc Wydział Matematyki i Fizyki Uniwersytetu Warszawskiego uruchomił uniwersyteckie klasy matematyczno-fizyczne w liceum im. Klementa Gottwalda (w latach 1906-50 oraz po 1990 roku Stanisława Staszica) - pretekst był prosty: pierwszym dyrektorem tego liceum był Jan Zydler, znakomity nauczyciel matematyki i autor do dziś niezapomnianych podręczników geometrii.

Teoria liczb

  1. Teoria liczb

    Prawda o matematykach

    Jakie jest największe miasto na świecie? Czy wirus jest organizmem żywym? Jaki jest najpiękniejszy obraz Tycjana? Są to proste pytania, na które nie ma jednoznacznej odpowiedzi. Przyczyną jest brak jasno określonych kryteriów. Jedną z cech wyróżniających matematykę spośród innych dziedzin życia i nauki jest to, że każde pojęcie ma swoją precyzyjną definicję. Wydaje się więc, że na każde pytanie matematyczne jest jednoznaczna odpowiedź, którą można formalnie uzasadnić. W konsekwencji, nic nie jest brane "na wiarę". Okazuje się, że nie do końca tak jest!

  2. Teoria liczb

    Kongruencje z królikiem

    Artykuł o powyższym tytule wypada rozpocząć od przypomnienia, czym są kongruencje. Jeśli dwie liczby naturalne |a i b dają tę samą resztę z dzielenia przez liczbę naturalną n (innymi słowy, jeśli |a− b jest podzielne przez n ), uczenie jest stwierdzić, że a i b przystają do siebie modulo n i fakt ten zanotować jako a ≡ b modn: W tym kontekście znaczek " ≡ " (lub raczej to, co on sobą reprezentuje) nazywamy właśnie kongruencją.

  3. Teoria liczb

    Dywany Antoniego - nie tylko bajka o pewnych zastosowaniach ciągu Fibonacciego

    Dawno, dawno temu, za drugą górą, za trzecią rzeką żył sobie królewicz Leonardo pochodzący ze szlachetnego rodu Fibonaccich. No, może nie całkiem królewicz, ale piąty syn dyplomaty włoskiego. Może nie całkiem za trzecią rzeką, bo urodził się za ósmą doliną i trzynastoma bagnami, dokładniej w Pizie w 1175 roku. Zatem przynajmniej rzeczywiście żył dawno, dawno temu. Choć w pewnym sensie żyje do dzisiaj w swoich uczniach, bowiem wieść o liczbach Fibonacciego rozeszła się po świecie i szumi o nich niejeden las...

Zastosowania matematyki

  1. Zastosowania matematyki

    Dowody i obliczenia

    Kilka miesięcy temu Marek Kordos zasugerował, że skoro napisałem już w Delcie 12/2014 o tym, czego o równaniu Naviera-Stokesa nie wiadomo, to może napisałbym też artykuł o tym, co z tym równaniem da się zrobić. Tak sformułowana oferta brzmi trochę jak "propozycja nie do odrzucenia", więc nieopatrznie obiecałem taki artykuł dostarczyć. Piszę "nieopatrznie", bo w momencie podjęcia zobowiązania nie uściśliliśmy, co powinienem rozumieć przez stwierdzenie da się zrobić. Czy chodzi o to, co da się udowodnić? Czy raczej o to, co daje się obliczyć?

Różności

Historia i filozofia nauk

  1. Historia i filozofia nauk

    Kilka słów o flogistonie, czyli o tym, jak błędna teoria przyniosła nauce wiele pożytku

    Dawni uczeni prezentowali rozmaite poglądy, od przesiąkniętych myśleniem magicznym (które często służyło zamaskowaniu niedostatków wiedzy) do zupełnie racjonalnych. Cechą wspólną ogółu badaczy przyrody było - i nadal jest - kierowanie się rozumem. Samo racjonalne wnioskowanie na podstawie przeprowadzonych eksperymentów nie gwarantuje jednak skonstruowania poprawnej teorii wyjaśniającej istotę obserwowanych zjawisk. Jednym z klasycznych przykładów takiego błędnie skonstruowanego formalizmu jest pochodząca z XVII wieku teoria flogistonu. Zdominowała ona umysły naukowców na następne sto lat.

zadania


tematy

stałe rubryki

autorzy