Przeskocz do treści

Delta mi!

  1. Teoria liczb

    Polowanie na ciągi

    W 1964 roku amerykańsko-brytyjski matematyk Neil Sloane zaczął kolekcjonować znane ciągi liczb całkowitych. Niewinne hobby, motywowane zbadaniem własności kilku ciągów, które pojawiły się podczas pracy nad jego rozprawą doktorską, szybko przerodziło się w duże przedsięwzięcie. W efekcie zostały opublikowane dwie książki A Handbook of Integer Sequences (wydana w roku 1973, zawierająca 2372 ciągi) oraz The Encyclopedia of Integer Sequences (z 1995 roku, 5847 ciągi). W 1996 roku, gdy liczba zgromadzonych ciągów przekroczyła 10 000, dalsze ich przechowywanie w postaci książkowej stało się bardzo niepraktyczne...

  2. Algebra Co to jest?

    Liczby zespolone i kwaterniony

    Tak jak problemy praktyczne prowadzą do równań, tak równania prowadzą czasem do nowych rodzajów liczb. Ambitny kmieć z czasów Mieszka I, będący właścicielem trzech krów i marzący o nabyciu (lub zdobyciu) dodatkowych sztuk bydła tak, by stać się szanowanym posiadaczem tuzina krów, musiał niewątpliwie rozwiązywać zadanie matematyczne, które dziś zapisujemy równaniem 3 + x = 12: Gdy zamienimy występujące tu liczby miejscami, otrzymamy równanie x + 12 = 3; które "nie da się rozwiązać": gołym okiem widać, że wśród liczb, za pomocą których zwykliśmy liczyć krowy (czyli liczb naturalnych), nie znajdzie się żadna, która by spełniała to równanie...

  3. Teoria liczb

    Od Prouheta–Tarry'ego–Escotta do Thuego–Morse'a

    Do jednych z najstarszych problemów w historii matematyki należy niewątpliwie zaliczyć równania diofantyczne, czyli równania o dziedzinie rozwiązań ograniczonej do liczb całkowitych. Obecną nazwę zawdzięczają one Diofantosowi, greckiemu matematykowi żyjącemu w III wieku naszej ery w Aleksandrii. Swoje rozważania na temat takich równań Diofantos zawarł w serii ksiąg pod tytułem Arytmetyka. Studiując jedną z nich, Pierre de Fermat - żyjący w XVII wieku francuski prawnik i matematyczny samouk - uznał, że pewne zawarte w niej równanie nie może mieć rozwiązań, o czym raczył poinformować przyszłych czytelników w słynnej uwadze, zamieszczonej na marginesie (czytanej przezeń książki oraz niniejszego artykułu).

  4. obrazek

    wikipedia

    Carl Friedrich Gauss (1777-1855)

    wikipedia

    Carl Friedrich Gauss (1777-1855)

    Algebra Co to jest?

    Liczby zespolone i kwaterniony

    Rozwiązywanie równań wymuszało poszerzenie zasobu liczb, jakimi się posługiwano. Równanie x + 3 = 12 można było rozwiązać, posługując się najnaturalniejszymi liczbami, zwanymi zresztą naturalne, ale równanie |x + 12 = 3 wymagało rozszerzenia ich zasobu do liczb całkowitych. Wyjście poza obręb równań pierwszego stopnia pokazało, że do rozwiązania np. równania  2 |x − 2 = 0 nie wystarczą nie tylko liczby całkowite, ale nawet wszystkie liczby wymierne, czyli ułamki a/b zbudowane z liczb całkowitych. Aby uzyskać rozwiązanie, do liczb wymiernych trzeba dołączyć nowe liczby, a wśród nich liczbę niewymierną  -- √ 2:

  5. Gry, zagadki, paradoksy Mała Delta

    Matematyka wedyjska

    "Matematyka wedyjska" to umowna nazwa zbioru algorytmów, które można zastosować, aby rozwiązać pewne rachunkowe problemy. Reguły te zostały sformułowane w XX wieku przez hinduskiego duchownego Bharatiego Kriszna Tirtha, który twierdził, że są one zapisane w hinduskich świętych księgach, Wedach.

  6. obrazek

    Teoria liczb

    Na tropie liczb gradowych

    W matematycznym świecie od zawsze znajdowało się mnóstwo tajemnic czekających na odkrycie. Tak zawiłych i zdradzieckich, że tylko szaleńcy mogli w ogóle wyobrazić sobie ich istnienie. Tymi szaleńcami byli nieustraszeni matematycy, którzy już od stuleci (jeżeli nie tysiącleci) szukają, rozwiązują i wyjaśniają zagadki, które większość ludzi już dawno uznawała za beznadziejne przypadki (lub są one tak abstrakcyjne, że w żaden sposób nieosiągalne).

  7. Teoria liczb

    Matematyka jest jedna: Magia liczb

    Dotarliśmy do ostatniej części cyklu, w którym prezentujemy wybrane przykłady zaskakujących relacji pomiędzy różnymi, pozornie bardzo odległymi, obszarami matematyki. Nie wypada jednak zakończyć bez poświęcenia należytej uwagi dziedzinie teorii liczb. Jak bowiem matematyka nazywana jest często królową nauk, tak o teorii liczb mówi się często jako o królowej matematyki. A królowa ma, oczywiście, wielu służących.

  8. Algebra Czegóż dawniej uczono

    Twierdzenie Sturma

    Rozważamy wielomian w o współczynnikach rzeczywistych stopnia n: Wiadomo, że wielomian taki ma n pierwiastków zespolonych; niektóre z nich (czasami wszystkie) są, być może, rzeczywiste. Twierdzenie Sturma pozwala obliczyć liczbę pierwiastków rzeczywistych wielomianu w należących do wybranego przedziału ⟨a;b⟩: Oczywiście, odpowiedź na to pytanie możemy uzyskać, stosując metodę badania funkcji wielomianowej w ; znaną z analizy matematycznej. Metoda Sturma jest czysto algebraiczna, nie stosuje metod analizy matematycznej.

  9. obrazek

    prof. dr Roman Sikorski (1920 - 1983) - polski matematyk, profesor Uniwersytetu Warszawskiego i Instytutu Matematycznego PAN.

    prof. dr Roman Sikorski (1920 - 1983) - polski matematyk, profesor Uniwersytetu Warszawskiego i Instytutu Matematycznego PAN.

    Analiza Co to jest?

    Czy liczby rzeczywiste są rzeczywiste?

    Liczby naturalne są niewątpliwie naturalne. Liczby całkowite niewątpliwie zasługują na nazwę całkowite. Liczby wymierne należałoby możne nazywać liczbami mierzącymi lub wymierzającymi, bowiem wszystkie pomiary wykonujemy w praktyce w liczbach wymiernych, zresztą nie tylko pomiary: wszelkie rachunki na konkretnych liczbach wykonywane są w praktyce wyłącznie w obrębie liczb wymiernych. Po co więc wprowadzać szersze, lecz znacznie trudniejsze pojęcie liczb rzeczywistych, skoro liczby wymierne wystarczają w rachunkach? Definicja liczb rzeczywistych nastręcza zawsze pewne trudności, wskutek tego w podręcznikach szkolnych jest raczej przemycana, niż precyzyjnie formułowana.

  10. Matematyka Deltoid

    Z armaty do muchy

    Poniższe zadania łączy to, że do rozwiązania każdego z nich można użyć pewnego Bardzo Znanego Twierdzenia, udowodnionego całkiem niedawno. Oczywiście to, że można strzelać z armaty do muchy nie oznacza, że zawsze trzeba...

  11. Teoria liczb

    Reszta jest dziełem człowieka, czyli Fermat i inni

    Nie ma słynniejszego twierdzenia niż Wielkie Twierdzenie Fermata (WTwF) i tego nie zamierzam tu dowodzić. Zacznę po prostu od sformułowania faktu, który od 1995 roku jest rzeczywiście twierdzeniem za sprawą Andrew Wilesa, a wcześniej przez około trzy i pół wieku był hipotezą zajmującą głowy największych matematyków i rzesze amatorów...

  12. Teoria liczb

    Wesołe liczby

    Czy jest coś weselszego na twarzy drugiego człowieka od jego uśmiechu? To w pewnym sensie filozoficzne pytanie potrafi wzbudzić wiele zainteresowania u każdego człowieka. Wszak każda osoba posiada swój własny kanon piękna oraz szczęścia...

  13. Analiza

    Myśl logarytmicznie!

    W tym artykule ilustrujemy potęgę logarytmów w projektowaniu efektywnych algorytmów i obliczeń. Myślenie, w tle którego stoi logarytm, ukryty lub widoczny, nazwaliśmy myśleniem logarytmicznym. Stanowi ono jedną z podstawowych kompetencji niezbędnych przy efektywnym rozwiązywaniu rzeczywistych problemów informatycznych. Pokazujemy również - co może być ciekawe dla nauczycieli matematyki - jak wprowadzić pojęcie logarytmu, nie odwołując się do matematycznego formalizmu, a posługując się koncepcyjnym modelem redukcji rozmiaru problemu w każdym (lub w co drugim) kroku co najmniej o połowę. Może Cię zdziwić, że ta idea prowadząca do logarytmu występuje w algorytmie Euklidesa, który został opisany niemal 2000 lat przed wynalezieniem logarytmu przez Napiera.

  14. Zastosowania matematyki

    Matematyka żonglowania

    Żonglerka to starożytna sztuka, jej początki wydają się dorównywać wiekiem ludzkości, znane są np. rysunki żonglującej kobiety znalezione w egipskim grobowcu datowanym na XII wiek p.n.e. Wystarczy kilka kamieni i trochę praktyki, nie jest więc wcale zdumiewające, że ludzie zaczęli się tym zajmować bardzo dawno.

  15. Teoria liczb Drobiazgi

    Choć proste to nieproste

    Starożytni Egipcjanie sprzed 4000 lat uznawali tylko ułamki proste, czyli takie, które w liczniku miały jedynkę. Oczywiście, były też inne ułamki, ale o nich uczeni mówić nie chcieli – przedstawiali je jako sumę ułamków prostych. Nie byłoby w tym niczego nadzwyczajnego, gdyby nie pretensjonalne wymaganie, aby w owej sumie każdy ułamek był inny.