Nagrody Abela w roku 2020
Za co Hillel Furstenberg (Uniwersytet Hebrajski w Jerozolimie) oraz Gregory Margulis (Uniwersytet Yale w New Haven) otrzymali tegoroczną nagrodę?
Za co Hillel Furstenberg (Uniwersytet Hebrajski w Jerozolimie) oraz Gregory Margulis (Uniwersytet Yale w New Haven) otrzymali tegoroczną nagrodę?
Tytułowe twierdzenie sformułujemy dla trójkąta (z brzegiem) na płaszczyźnie euklidesowej Jest to najsłynniejsze i najważniejsze twierdzenie w topologicznej teorii punktów stałych o rozlicznych zastosowaniach (w równaniach różniczkowych, topologii, ekonomii, teorii gier, analizie funkcjonalnej). Jego odkrycie miało ogromny wpływ na rozwój wielu gałęzi matematyki, szczególnie topologii algebraicznej.
Inwersja jest bardzo pożytecznym przekształceniem, które ma szerokie zastosowanie w zadaniach związanych z okręgami. W wielu z nich opłaca się stosować ją w taki sposób, aby nie mnożyć punktów - innymi słowy tak dobrać promień inwersji, aby obrazy interesujących nas punktów wypadały w innych punktach rozważanej konfiguracji. Zdarza się jednak, że do uzyskania tego efektu potrzebujemy dodatkowo złożyć inwersję z symetrią.
Rozpocznijmy od przypomnienia, czym jest trójkąt geodezyjny. Mając dane dwa punkty na powierzchni (powiedzmy, że leżące odpowiednio blisko siebie), najkrótszą łączącą je krzywą leżącą na tej powierzchni nazwiemy geodezyjną. Dla przykładu - na płaszczyźnie tę rolę pełnią odcinki, a na sferze łuki tzw. okręgów wielkich. Przez trójkąt geodezyjny rozumiemy obszar wyznaczony przez trzy punkty, zamknięty między łączącymi je geodezyjnymi. Kąt w wierzchołku takiego trójkąta liczymy jako kąt między stycznymi do odpowiednich krzywych geodezyjnych.
Jeśli czytasz ten tekst, to świetnie się składa, możesz poznać drobny fragment topologii i zmierzyć się z następującym pytaniem: Ile topologicznie różnych figur można ułożyć na płaszczyźnie z sześciu zapałek, które stykają się tylko końcami?
Planimetria Kącik początkującego olimpijczyka
Przedstawiamy wygodne narzędzie geometryczne o wielu zastosowaniach, wśród których znajduje się dowodzenie współliniowości punktów.
Homeomorfizmy to przekształcenia zachowujące różne własności zbiorów (obiektów geometrycznych). Znaczy to, że pewne cechy obiektu są zachowywane przy "ściskaniu" lub "rozciąganiu", bez sklejania lub rozcinania, dziurawienia itp.
W tym artykule omówimy pewną bardzo pożyteczną technikę - tzw. przesuwanie. Polega ona na tym, że niektóre obiekty przesuwamy o pewien wektor i udowadniamy, że teza zadania jest niezmiennicza ze względu na wykonanie tej operacji. Ta metoda pozwala na sprowadzenie rozwiązywanego zadania do znacznie prostszego. Bardzo często ten prostszy przypadek ma jakiś rodzaj symetrii, z której łatwo wywnioskować tezę. Zanim przejdziemy do rozwiązywania zadań, odnotujmy dwie proste własności opisanej operacji.
Paradoks Banacha-Tarskiego (1924 r.). Kulę można rozłożyć na skończenie wiele części, z których da się zbudować dwie takie same kule.
W 1967 roku szkoła podstawowa wypuściła po raz pierwszy absolwentów ośmioletniej podstawówki (tak, kiedyś też były reformy szkolne). W ogólnym reformatorskim zamieszaniu można było zrobić coś nietypowego, więc Wydział Matematyki i Fizyki Uniwersytetu Warszawskiego uruchomił uniwersyteckie klasy matematyczno-fizyczne w liceum im. Klementa Gottwalda (w latach 1906-50 oraz po 1990 roku Stanisława Staszica) - pretekst był prosty: pierwszym dyrektorem tego liceum był Jan Zydler, znakomity nauczyciel matematyki i autor do dziś niezapomnianych podręczników geometrii.
W artykule Czy Ziemia jest płaska (Delta 4/2016) pokazaliśmy, że sfera (będąca uproszczonym modelem powierzchni Ziemi) nie jest płaska, to znaczy nie daje się podzielić na fragmenty, z których każdy byłby izometryczny z pewnym fragmentem płaszczyzny. Przypomnijmy, że ta cecha odróżnia sferę od powierzchni bocznych walca i stożka. Pójdźmy więc dalej - czy jest możliwa taka gładka deformacja sfery, aby uzyskać powierzchnię płaską?
Ten artykuł będzie poświęcony zliczaniu różnych kolorowań obiektów, które podlegają symetrii. Wyobraźmy sobie, że Kalina chciałaby pokolorować rogi kwadratu za pomocą kolorów. Ile różnych figur może w ten sposób otrzymać?
Na pierwszym etapie XI Olimpiady Matematycznej Gimnazjalistów pojawiło się pytanie, na które tylko 24% uczestników odpowiedziało poprawnie...
Wiele przedmiotów zawdzięcza swe istnienie kompozycji dwóch pozornie niewspółistniejących ze sobą idei. Louis Braille połączył koncepcję zapisu graficznego, czyli odczytywanego za pomocą wzroku, ze sposobem zapisywania wiadomości zaprojektowanym dla ludzi niewidomych, którzy korzystają ze zmysłu dotyku. W rezultacie powstał alfabet dla niewidomych, który można odczytać także za pomocą wzroku. Podobnie narodził się pomysł na zbadanie obrazów inwersyjnych w różnych metrykach...
Chyba każdy patrzył kiedyś w kalejdoskop - prostokątne lustra odbijające różnobarwne wzory powstałe z przesypujących się koralików. Nie znam nikogo, kto mając w ręku owo urządzenie, byłby w stanie powstrzymać się przed choćby najmniejszym obróceniem nim i zerknięciem przez małe oczko na otrzymany efekt. A gdyby odwrócić sytuację i zbadać, jak zmieni się obraz, gdy zamiast koralikami poruszymy lustrami znajdującymi się w kalejdoskopie? Zacznijmy od wyprawy do szklarza i wyboru bohatera kalejdoskopowych przygód - po starannym castingu wygrywa żaba.
Pozwolę sobie podtrzymać Czytelnika w napięciu i tytułowe pytanie tymczasem zostawię bez odpowiedzi. Zacznę za to od refleksji, czym jest płaskość.
Grupa warkoczy była rozważana po raz pierwszy przez Adolfa Hurwitza w roku 1885, jednak nie pod tą nazwą; w grupie rozważanej przez Hurwitza trudno było dopatrzyć się warkoczy. Nazwę wprowadził Emil Artin w roku 1925, bo w jego interpretacji elementy grupy kojarzą się z warkoczami. Przypomnę, jak się je zaplata...
W ostatnich kilkunastu latach na pograniczu geometrii różniczkowej i teorii równań różniczkowych rozrósł się nowy, pokaźny dział matematyki, poświęcony badaniom krzywych i powierzchni, które poruszają się zgodnie z jakimś określonym przepisem, zmieniając wraz z upływem czasu swój charakter i własności. Różne punkty mogą przy tym poruszać się z różnymi prędkościami, wyznaczonymi przez rozmaite geometryczne charakterystyki krzywej czy powierzchni...
Tym razem o obrotach na płaszczyźnie...
W 1641 roku ukazały się Centrobaryca Paula Guldina, a w nich twierdzenie znane dziś jako reguły Guldina...