Teoria liczb Kącik początkującego olimpijczyka
Lemat o zwiększaniu wykładnika p-adycznego
O zależnościach między i
Teoria liczb Kącik początkującego olimpijczyka
O zależnościach między i
Teoria liczb Kącik początkującego olimpijczyka
O wygodnym narzędziu, przydatnym wszędzie tam, gdzie spotykamy rozkład na czynniki pierwsze
Algebra Kącik początkującego olimpijczyka
O stosowaniu podstawowej wiedzy szkolnej na temat funkcji kwadratowej do rozwiązywania zadań olimpijskich.
Tym razem o kilku ciekawych własnościach funkcji Eulera.
Jednym z naturalnych skojarzeń z nieskończonością są duże, bardzo duże liczby. Tak bardzo, że trudno je sobie wyobrazić, a intuicja nie pomaga. Możemy jednak o nich pomyśleć. Czytając doniesienia o wydatkach z budżetu państwa lub tym bardziej o światowej gospodarce, łatwo pogubić się w milionach, miliardach i bilionach. I chociaż wiemy, że w bilionie mieści się aż milion milionów, mało kto jest w stanie to sobie wyobrazić. Wszystkie te liczby wpadają w tę samą kategorię - liczb dużych na tyle, że nie znajdujemy dla nich zastosowania w zwyczajnym codziennym życiu.
Powiążemy tu wzór Leibniza
z geometrią (pola) i teorią liczb. Tekst jest wyraźnie dłuższy od tego, który jest w książce Hilberta i Cohn-Vossena, bo szkicujemy dowód twierdzenia z teorii liczb, na które autorzy jedynie powołują się. Pozostawimy jednak bez dowodu niektóre bardzo znane twierdzenia z teorii liczb, ze względu na ograniczenia miejsca w miesięczniku. Zaznaczyć warto, że podawany zwykle studentom pierwszego roku dowód jest krótszy, ale zdaniem autora tego tekstu, nie pokazuje związku z geometrią, który jest mocno sugerowany obecnością we wzorze.
Niech będzie liczbą nieparzystą...
Skończyłam! - krzyknęła triumfalnie Agatka do swojego brata, Bartka. Dziewczynka regularnie domaga się od starszego chłopca rozmaitych ciekawostek matematycznych, których ten dowiaduje się w liceum...
Słynne twierdzenie Dirichleta głosi, że jeżeli liczby naturalne są względnie pierwsze, to ciąg arytmetyczny zawiera nieskończenie wiele liczb pierwszych. Przedstawimy kilka wniosków płynących z tego twierdzenia.
W 1994 roku Peter Shor, pracujący wówczas w Bell Labs w New Jersey, pokazał, jak przy użyciu hipotetycznego komputera kwantowego rozłożyć w czasie wielomianowym dowolną liczbę naturalną na czynniki pierwsze. W tamtym czasie algorytmy kwantowe dopiero raczkowały. To właśnie odkrycie Shora spowodowało wielki rozwój tej dziedziny. Społeczność informatyków zrozumiała, że gdyby udało się zbudować komputer kwantowy rozsądnej wielkości, to świat stałby się istotnie inny. Nie jest bowiem znany żaden algorytm dla problemu faktoryzacji, czyli rozkładu na dzielniki pierwsze, który działa w czasie wielomianowym na komputerze klasycznym. Co więcej, nawet nie znaleziono algorytmu losowego, który z dużym prawdopodobieństwem w zazwyczaj niedługim czasie faktoryzuje liczbę: nie jest po prostu znana zupełnie żadna rozsądna heurystyka...
W Delcie 7/2017 przedstawiliśmy kilka "olimpijskich" zastosowań twierdzenia Combinatorial Nullstellensatz. Okazuje się, że zamiast "zwykłych" wielomianów wielu zmiennych możemy rozważać wielomiany o współczynnikach będących resztami z dzielenia przez pewną liczbę pierwszą z dodawaniem i mnożeniem modulo Poniżej przedstawimy trzy klasyczne twierdzenia, których proste dowody są oparte na Combinatorial Nullstellensatz w wersji "resztowej". Twierdzenia te są szczególnie bliskie zastosowaniom olimpijskim.
W historii ludzkiego poznania mało jest tak fascynujących pojęć jak liczby pierwsze. Chociaż dzisiaj wiemy o nich znacznie więcej niż 120 lat temu, to jeszcze więcej dotyczących ich pytań pozostaje bez odpowiedzi. Celem tej notki jest pokazanie, że trudno jest ocenić na pierwszy rzut oka, czy pytanie dotyczące liczb pierwszych jest łatwe, czy też bardzo trudne - poza zasięgiem współczesnej nauki.
Małe Twierdzenie Fermata ma również taki dowód...
Dotarliśmy do ostatniej części cyklu, w którym prezentujemy wybrane przykłady zaskakujących relacji pomiędzy różnymi, pozornie bardzo odległymi, obszarami matematyki. Nie wypada jednak zakończyć bez poświęcenia należytej uwagi dziedzinie teorii liczb. Jak bowiem matematyka nazywana jest często królową nauk, tak o teorii liczb mówi się często jako o królowej matematyki. A królowa ma, oczywiście, wielu służących.
3, 7, 31, 211, 2311, ... – jaki jest następny wyraz tego ciągu? Jakiś czas temu taka zagadka pojawiła się na jednej z polskich rozrywkowych stron internetowych. Niemal od razu w komentarzach pod nią rozpoczął się spór o poprawne, prawdziwe rozwiązanie. Czytelnik zapewne zechce podjąć wyzwanie samodzielnego odnalezienia następnego elementu ciągu i jego ogólnej reguły. Zatem zatrzymajmy się tu i pozwólmy sobie na chwilę namysłu; w dalszej części tekstu pojawi się rozwiązanie (autorowi niniejszego tekstu zajęło kilka dłuższych chwil znalezienie formuły).
Chyba wszyscy lubimy liczby pierwsze. Szczególne wrażenie robią te naprawdę duże, wydają się skrywać w sobie jakąś nadzwyczajną tajemnicę: dlaczego akurat one stały się swego rodzaju wybrańcami spośród innych liczb i mają tak niezwykłe właściwości?
Zamieszczony w poprzednim numerze, jako zapowiedź tego numeru, widoczny obok kwadrat magiczny jest dla (lub ) i złożony z samych liczb pierwszych.
Gry, zagadki, paradoksy Drobiazgi
W Delcie 3/1979 zamieściliśmy największy znany wówczas kwadrat magiczny złożony z różnych liczb pierwszych – było ich 169. Co więcej, był to kwadrat „cebulkowy”. A dziś – proszę: istnieje już „cebulkowy” kwadrat magiczny aż o trzy większy, złożony zatem z dwustu pięćdziesięciu sześciu liczb pierwszych. I jak tu nie wierzyć w postęp!
Sophie Germain (1776–1831), wbrew ówczesnym obyczajom matematyk, fizyk, metalurg i autorka ciekawych szkiców o kulturze, prawie na każdym kroku musiała udowadniać swą wiedzę i bronić swych dokonań przed rzeszami niedowiarków.