Przeskocz do treści

Delta mi!

  1. Topologia

    Nieuczesane myśli topologa

    W salonie fryzjerskim siedzi matematyk, obok leży połyskująca para nożyczek, mnóstwo szczotek i innych sprzętów. Matematyk nerwowo wierci się w fotelu - przecież nie od dziś wie, że sfery zaczesać się nie da. Fryzjer intuicyjnie sięga po nożyczki, szalejące nad czołem rozmaitości nie rokują zbyt dobrze. Niechętny rozspójnieniu klient wpada na pomysł - warkocz będzie idealny!

  2. Algebra Co to jest?

    Grupa

    Ustalmy zbiór X; np. X = {1;2; :::;2019}: Niech |S X oznacza zbiór funkcji odwracalnych z X w X: Funkcje z |SX można składać i odwracać, nie wychodząc poza SX: W zbiorze SX istnieje też funkcja identycznościowa. Tytułowe grupy są abstrakcyjnym sposobem wyrażenia powyższych własności zbioru S : X

  3. Planimetria

    Uczniowie

    W 1967 roku szkoła podstawowa wypuściła po raz pierwszy absolwentów ośmioletniej podstawówki (tak, kiedyś też były reformy szkolne). W ogólnym reformatorskim zamieszaniu można było zrobić coś nietypowego, więc Wydział Matematyki i Fizyki Uniwersytetu Warszawskiego uruchomił uniwersyteckie klasy matematyczno-fizyczne w liceum im. Klementa Gottwalda (w latach 1906-50 oraz po 1990 roku Stanisława Staszica) - pretekst był prosty: pierwszym dyrektorem tego liceum był Jan Zydler, znakomity nauczyciel matematyki i autor do dziś niezapomnianych podręczników geometrii.

  4. Kombinatoryka

    Teoria grup w kombinatoryce

    Ten artykuł będzie poświęcony zliczaniu różnych kolorowań obiektów, które podlegają symetrii. Wyobraźmy sobie, że Kalina chciałaby pokolorować rogi kwadratu za pomocą m kolorów. Ile różnych figur może w ten sposób otrzymać?

  5. Algebra

    O grupie warkoczy

    Grupa warkoczy była rozważana po raz pierwszy przez Adolfa Hurwitza w roku 1885, jednak nie pod tą nazwą; w grupie rozważanej przez Hurwitza trudno było dopatrzyć się warkoczy. Nazwę wprowadził Emil Artin w roku 1925, bo w jego interpretacji elementy grupy kojarzą się z warkoczami. Przypomnę, jak się je zaplata...

  6. Geometria

    Słowa, słowa, słowa...

    Słowa, którymi będziemy się zajmowali, będą napisami złożonymi z liter jednego lub kilku zbiorów (na początek przyjmijmy, że zbiory są dwa – jeden zawiera małe litery łacińskie, a drugi duże) o tej własności, że dwie jednakowe litery umieszczone po kolei będą znikały. Napis, w którym wszystko znikło (czasem i taki jest potrzebny), będzie oznaczany 1.

  7. obrazek

    Évariste Galois

    Évariste Galois

    Algebra

    Pojedynek, symetrie i potwór – klasyfikacja grup prostych

    30 maja 1832 roku w Paryżu zginął w pojedynku młody matematyk, Evariste Galois. Nie ma pewności, czy pojedynek ten miał podłoże polityczne, czy też Galois bronił honoru pewnej młodej damy. W pożegnalnym liście poprosił on, by jego notatki wysłać Jacobiemu albo Gaussowi. Żaden z tych wielkich matematyków nigdy nie zobaczył jednak zapisków Galois.

  8. Algebra Mała Delta

    Można zacząć od banknotu

    Na ile sposobów można przykryć banknotem prostokąt o tych samych rozmiarach? xxx Każdy od razu zgadnie, że na cztery sposoby: do góry orłem, przy czym orzeł może być do dołu lub do góry nogami, i podobnie na dwa sposoby królem do góry (choć na banknocie nie widać jego nóg).