Przeskocz do treści

Delta mi!

  1. Topologia

    Elementarnie o twierdzeniu Brouwera

    Tytułowe twierdzenie sformułujemy dla trójkąta (z brzegiem) na płaszczyźnie euklidesowej  2 R : Jest to najsłynniejsze i najważniejsze twierdzenie w topologicznej teorii punktów stałych o rozlicznych zastosowaniach (w równaniach różniczkowych, topologii, ekonomii, teorii gier, analizie funkcjonalnej). Jego odkrycie miało ogromny wpływ na rozwój wielu gałęzi matematyki, szczególnie topologii algebraicznej.

  2. obrazek

    Planimetria Deltoid

    O deltoidach

    Niniejszy odcinek Deltoidu o okrągłym (w systemie jedenastkowym) numerze jest odcinkiem ostatnim. Nie kryjemy smutku z tego powodu, cieszymy się jednocześnie, że na naszych łamach ta wspaniała seria ukazywała się przez okrągłych 10 lat. Mamy nadzieję, że jeszcze wiele razy nazwisko Autorki zagości w naszym spisie treści.
    Joasiu, za Twoją nienaganną punktualność w dostarczaniu materiałów, zegarmistrzowską dokładność przy ich korekcie, a przede wszystkim za deltoidową fantastyczność serdecznie dziękujemy!

    Redakcja

  3. obrazek

    Rys. 1

    Rys. 1

    Planimetria

    O ortocentrach i parabolach, a zwłaszcza o twierdzeniu odwrotnym Steinera

    W Delcie 11/2017 został przedstawiony (bez dowodu) fakt, że dla czterech dowolnych prostych (tak dowolnych, że są parami nierównoległe i żadne trzy nie mają punktu wspólnego) ortocentra wyznaczonych przez nie czterech trójkątów leżą na jednej prostej, a okręgi opisane na tych trójkątach mają punkt wspólny. Ponadto parabola, której kierownicą jest prosta zawierająca ortocentra, a ogniskiem punkt wspólny okręgów opisanych jest styczna do czterech wyjściowych prostych (Rys. 1).

  4. obrazek

    Punkty D, E, F to środki boków, X, X', Y, Y', Z, Z' oznaczają pola.

    Punkty D, E, F to środki boków, X, X', Y, Y', Z, Z' oznaczają pola.

    Planimetria Deltoid

    Środkowe i pola

    Środkowa trójkąta to odcinek łączący wierzchołek ze środkiem przeciwległego boku. Środkowe przecinają się w jednym punkcie, zwanym środkiem ciężkości i dzieli on każdą z nich w stosunku |2 1; licząc od wierzchołka trójkąta (rys. obok).

  5. Planimetria Deltoid

    Wysokości czworokąta

    Wysokością czworokąta nazwijmy prostą przechodzącą przez środek jego boku i prostopadłą do boku przeciwległego. W niektórych czworokątach wszystkie cztery wysokości przecinają się w jednym punkcie - ortocentrum czworokąta. Przykładowo kwadrat ma ortocentrum, a romb niebędący kwadratem nie ma.

  6. Planimetria Deltoid

    Pasujemy do siebie!

    W wielu zadaniach, w których występują kąty lub ich sumy, przydatne bywa przeniesienie pewnych figur tak, by kąty te znalazły się obok siebie. Szczególnie wygodne jest to wtedy, gdy suma pewnych kątów równa jest np. |90○ lub |360○; a także, gdy niektóre z danych odcinków są równej długości.

  7. Planimetria

    Przesuwanie w zadaniach olimpijskich

    W tym artykule omówimy pewną bardzo pożyteczną technikę - tzw. przesuwanie. Polega ona na tym, że niektóre obiekty przesuwamy o pewien wektor i udowadniamy, że teza zadania jest niezmiennicza ze względu na wykonanie tej operacji. Ta metoda pozwala na sprowadzenie rozwiązywanego zadania do znacznie prostszego. Bardzo często ten prostszy przypadek ma jakiś rodzaj symetrii, z której łatwo wywnioskować tezę. Zanim przejdziemy do rozwiązywania zadań, odnotujmy dwie proste własności opisanej operacji.

  8. Zastosowania matematyki

    Programowanie liniowe w geometrii

    Proste do zdefiniowania i zrozumienia problemy geometryczne często są trudne do rozwiązania i wymagają użycia skomplikowanych algorytmów. Weźmy, na przykład, zadanie polegające na znalezieniu największego okręgu, który możemy zmieścić w wielokącie. Środek tego okręgu nazywany jest środkiem Czebyszewa. Jeżeli mamy do czynienia z dowolnie wybranym trójkątem bądź wielokątem foremnym, środek Czebyszewa znajduje się w punkcie przecięcia dwusiecznych jego dwóch dowolnych kątów. Zagadnienie staje się o wiele bardziej skomplikowane, gdy weźmiemy pod uwagę dowolny, nieregularny wielokąt.

  9. Planimetria

    Wpisywanie

    W geometrii dyskretnej przyjęło się mówić, że wielokąt jest wpisany w inny wielokąt, gdy ma wierzchołki na prostych zawierających boki tego drugiego wielokąta. Od czasu Hilberta tego zwrotu używa się i w przypadku "zwyczajnej" geometrii.

  10. obrazek

    Rys. 1

    Rys. 1

    Planimetria Deltoid

    Łuki Talesa

    Odcinek AB widać z punktu C pod kątem ff , gdy ?ACB = ff: Z twierdzenia o kątach wpisanych wynika, że jeśli punkty C i D leżą na okręgu po tej samej stronie jego cięciwy AB; to widać ją z C i |D pod tym samym kątem (Rys. 1).