Przeskocz do treści

Delta mi!

  1. Matematyka

    Trójkąt Sierpińskiego gra o życie

    Tytuł niniejszego artykułu jest zestawieniem dwóch pozornie odległych pojęć matematycznych. Pierwszym z nich jest trójkąt Sierpińskiego - jeden z najlepiej rozpoznawalnych fraktali. Drugim jest gra w życie - automat komórkowy opisany w 1970 roku przez Johna Conwaya.

  2. obrazek

    Zastosowania matematyki

    Mathematica i fraktale

    Wolfram Mathematica to popularny, nie tylko wśród studentów matematyki, system obliczeniowy, który umożliwia rozwiązywanie zadań z dziedzin, takich jak matematyka, fizyka czy ekonomia. Mamy tu oczywiście rachunek różniczkowy i całkowy, algebrę i statystykę, lecz także najróżniejsze metody z zakresu od matematyki czysto teoretycznej aż po zastosowania w data science, biznesie, inżynierii czy medycynie. Łącznie mamy prawie 5000 wzajemnie zintegrowanych, wbudowanych funkcji. Mathematica używa własnego języka programowania Wolfram Language, który cechuje się wydajnym operowaniem na listach. Zaletą systemu Mathematica jest także przyjazny interfejs z rozbudowaną dokumentacją każdej z funkcji, a także szerokie możliwości interaktywnej wizualizacji obliczeń.

  3. Matematyka Mała Delta

    Fraktale z zer i jedynek

    Tradycyjnie fraktale kojarzą nam się (często) z ładnymi rysunkami figur, które wykazują pewien zestaw cech odróżniających je od zwykłych obiektów. Nie precyzujemy tutaj uniwersalnego zestawu, gdyż sama definicja fraktala nie jest uniwersalna. W większości sytuacji chcemy, aby fraktal miał złożoną strukturę, spełniał pewne cechy samopodobieństwa oraz by nie dało się go zbyt prosto opisać geometrycznie. Mimo to często można go opisać względnie prosto pewnymi regułami rekurencyjnymi wykonywanymi na obiekcie startowym (lub zestawie takich obiektów).

  4. obrazek

    Geometria

    Fraktalny świat papierowej tasiemki

    Weźmy długi pasek papieru i złóżmy go na pół. Następnie, nie rozkładając, óżmy go w tę samą stronę jeszcze dwa razy. W końcu, rozprostujmy złożenia tak, by papier zginał się pod kątem math Otrzymamy obiekt jak na rysunku 1.

  5. obrazek

    Teoria miary

    Jak wygląda zbiór math-wymiarowy, czyli o wymiarze fraktali

    Pod koniec XIX wieku w matematyce zaczęły pojawiać się niespotykane wcześniej obiekty geometryczne, charakteryzujące się skomplikowanym kształtem i zjawiskiem „samopodobieństwa” (podobieństwa dowolnie małych fragmentów do całości zbioru). Tego rodzaju zbiory nazywamy dziś fraktalami. Aby lepiej opisać geometrię takich obiektów, wykorzystuje się różne odmiany pojęcia wymiaru, zwane czasami wymiarami fraktalnymi.

  6. obrazek

    Solkoll / wikipedia

    Zastosowania matematyki

    Układy iterowanych przekształceń

    Kto coś słyszał o fraktalach, zwykle potrafi wymienić dwie ich cechy charakterystyczne: figury te mają skomplikowany kształt (bardziej wtajemniczeni mówią o ułamkowym wymiarze; kto chce być bardziej wtajemniczony, przeczyta artykuł Krzysztofa Barańskiego na stronie 4) i wykazują samopodobieństwo (bardziej wtajemniczeni umieją powiedzieć, jakiego rodzaju: geometryczne, afiniczne, rzutowe, a może stochastyczne). Mówiąc ogólnie, cechy te ma również wiele obiektów spotykanych w świecie, a to otwiera szerokie pole do zastosowań fraktali w grafice komputerowej. Jej celem jest przecież naśladowanie rzeczywistości.

  7. Fizyka kwantowa

    Fraktale kwantowe

    Czy funkcje fraktalne mają cokolwiek wspólnego z opisem zjawisk w rzeczywistości? Okazuje się, że tak. Funkcje fraktalne mogą opisywać stany kwantowe prostych obiektów, np. cząstki w pudełku...