Przeskocz do treści

Delta mi!

  1. Teoria liczb

    Sumy kwadratów wielomianów

    Suma kwadratów najczęściej kojarzy się nam z twierdzeniem Pitagorasa - słusznie, ale warto wiedzieć, że temat ten ma swoje miejsce również w teorii liczb, gdzie interesuje nas, czy daną liczbę całkowitą można przedstawić w postaci sumy kwadratów innych liczb całkowitych. Intrygujące jest również pytanie, ile składników znajduje się w tej sumie. Osiągnięcia w tym zakresie mieli między innymi Fermat, Euler i Lagrange...

  2. obrazek

    Algebra

    Symetrie ciał i grupy: teoria Galois

    Poniższa opowieść była na tyle ważna dla młodego, zaledwie dwudziestoletniego, matematyka Évariste'a Galois, że poświęcił ostatni dzień przed pojedynkiem, aby spisać ją w liście do przyjaciela. Niestety, nie dostał od losu szansy na kontynuowanie swoich prac, ale jakiś czas po jego śmierci matematycy zrozumieli znaczenie jego pomysłów. Ślady teorii, z której zarysem Czytelnik zapoznać się może w dalszej części artykułu, odnaleźć można w wielu gałęziach współczesnej matematyki. Jej bezpośrednim następstwem jest wiele efektownych rozwiązań problemów, których ludzkość szukała przez setki lat: nierozwiązalność (przez pierwiastniki) równań wielomianowych stopnia 5 lub wyższego, niekonstruowalność pewnych wielokątów foremnych (cyrklem i linijką), a także niewykonalność klasycznych konstrukcji geometrycznych, czyli podwojenia sześcianu, trysekcji kąta i kwadratury koła.

  3. Algebra

    Combinatorial Nullstellensatz w teorii liczb

    W Delcie 7/2017 przedstawiliśmy kilka "olimpijskich" zastosowań twierdzenia Combinatorial Nullstellensatz. Okazuje się, że zamiast "zwykłych" wielomianów wielu zmiennych możemy rozważać wielomiany o współczynnikach będących resztami z dzielenia przez pewną liczbę pierwszą |p; z dodawaniem i mnożeniem modulo p: Poniżej przedstawimy trzy klasyczne twierdzenia, których proste dowody są oparte na Combinatorial Nullstellensatz w wersji "resztowej". Twierdzenia te są szczególnie bliskie zastosowaniom olimpijskim.

  4. obrazek

    Algebra Jak to działa?

    Maszyna różnicowa

    Dlaczego w szkole tak dużo uczymy się o wielomianach? Są dwa podstawowe powody. Pierwszy z nich - całkiem zrozumiały - po prostu jest to niemal największa klasa funkcji, których wartości umiemy obliczać. Potrafimy jeszcze dzielić wartości wielomianów, ale z pozostałymi funkcjami, które występują w programie szkolnym, a później na studiach, w zasadzie mielibyśmy sporo problemów.

  5. obrazek

    Paolo Ruffini (1765-1822)

    Paolo Ruffini (1765-1822)

    Algebra

    Równania algebraiczne

    Równania algebraiczne, czyli takie, które można zapisać, przyrównując wielomian do zera, intrygowały ludzi od bardzo dawna. Rozwiązywaniem równań zajmowano się już w czasach starożytnych. W szkole uczą nas, jak rozwiązywać równania liniowe i kwadratowe, to jest takie, w których występuje funkcja liniowa (wielomian stopnia pierwszego) albo funkcja kwadratowa (wielomian stopnia drugiego). Matematycy włoscy podali w XVI wieku wzory na pierwiastki równań stopnia trzeciego i czwartego. A co z równaniami wyższych stopni?

  6. Teoria liczb

    Matematyka jest jedna: Magia liczb

    Dotarliśmy do ostatniej części cyklu, w którym prezentujemy wybrane przykłady zaskakujących relacji pomiędzy różnymi, pozornie bardzo odległymi, obszarami matematyki. Nie wypada jednak zakończyć bez poświęcenia należytej uwagi dziedzinie teorii liczb. Jak bowiem matematyka nazywana jest często królową nauk, tak o teorii liczb mówi się często jako o królowej matematyki. A królowa ma, oczywiście, wielu służących.

  7. Algebra Czegóż dawniej uczono

    Twierdzenie Sturma

    Rozważamy wielomian w o współczynnikach rzeczywistych stopnia n: Wiadomo, że wielomian taki ma n pierwiastków zespolonych; niektóre z nich (czasami wszystkie) są, być może, rzeczywiste. Twierdzenie Sturma pozwala obliczyć liczbę pierwiastków rzeczywistych wielomianu w należących do wybranego przedziału ⟨a;b⟩: Oczywiście, odpowiedź na to pytanie możemy uzyskać, stosując metodę badania funkcji wielomianowej w ; znaną z analizy matematycznej. Metoda Sturma jest czysto algebraiczna, nie stosuje metod analizy matematycznej.

  8. Matematyka Deltoid

    Z armaty do muchy

    Poniższe zadania łączy to, że do rozwiązania każdego z nich można użyć pewnego Bardzo Znanego Twierdzenia, udowodnionego całkiem niedawno. Oczywiście to, że można strzelać z armaty do muchy nie oznacza, że zawsze trzeba...

  9. Matematyka

    Matematyka jest jedna: wielomiany mogą wszystko

    Jednomiany postaci | f x xn są jednymi z pierwszych funkcji rzeczywistych, z którymi mamy do czynienia w naszym matematycznym życiu. Odrobinę później poznajemy ich kombinacje o współczynnikach rzeczywistych, czyli tytułowe wielomiany. Jest więc to pojęcie elementarne, które powinno być doskonale znane każdemu maturzyście. Tym bardziej może zadziwiać, jak często wielomiany i ich podstawowe własności stanowią klucz do wielu trudnych problemów, które na pozór nic z wielomianami wspólnego nie mają. Zaprezentujemy to na przykładach z algebry, teorii liczb i kombinatoryki.

  10. Algebra

    Zadania z indywidualnością

    Matematyka, zwłaszcza tzw. szkolna, wypracowała przez lata procedury rozwiązywania określonego typu zadań. Gdy rozpoznajemy problem jako równanie kwadratowe, w głowie pojawia się hasło "bekwadratminusczteryace" i już wszystko wiadomo, niezależnie od tego, jak w rzeczywistości nazwaliśmy współczynniki funkcji kwadratowej...

  11. Algebra

    O tym, co się da, a czego nie da się rozwiązać

    Rozwiąż równanie! – to jedno z najczęściej słyszanych przez ucznia poleceń nauczyciela matematyki. Gdy usłyszymy to polecenie, nie wątpimy, że otrzymane równanie można rozwiązać i że my potrafimy to zrobić. Zresztą o każdym zadaniu matematycznym, na które natrafimy, uważamy, że można je rozwiązać. Jeśli nie widzimy rozwiązania od razu, to pewnie trzeba jeszcze trochę pomyśleć, pokombinować, wynaleźć jakiś sprytny sposób, może poczytać w mądrych książkach i rozwiązanie musi się znaleźć. Czy na pewno tak jest? Okazuje się, że istnieją zadania, niedające się rozwiązać, choć są łudząco podobne do innych, które rozwiązujemy bez trudu.

  12. Algebra O tym, czego nie ma

    Wielomian, który nie ma pierwiastków

    Jak wiele innych ważnych twierdzeń matematyki, zasadnicze twierdzenie algebry, udowodnione przez Carla Friedricha Gaussa w ostatnim roku osiemnastego stulecia, informuje nas, że pewne obiekty nie istnieją. Mianowicie, nie ma takiego, różnego od stałej, wielomianu zmiennej zespolonej, który nie znikałby w żadnym punkcie płaszczyzny zespolonej math