Przeskocz do treści

Delta mi!

  1. Matematyka Drobiazgi

    Widoczność w nieskończonym lesie

    Stoimy u progu nieskończenie milowego, nad wyraz uporządkowanego lasu. Najlepszym miejscem na uporządkowany las jest oczywiście układ współrzędnych. Pnie drzew, które są odcinkami, umieszczone są w punktach o współrzędnych całkowitych nieujemnych. Nasz wzrok z punktu |(0;0); w którym drzewa nie ma, przygląda się temu zjawisku (patrz rysunek). Taki las ciągnie się nieskończenie daleko...

  2. obrazek

    Rys. 1 Możliwe ruchy ciemnoszarego pionka

    Rys. 1 Możliwe ruchy ciemnoszarego pionka

    Gry, zagadki, paradoksy

    1, 2, 3, 4, ...

    Conway's Soldiers to jednoosobowa łamigłówka, w której żołnierze (pionki) przedostają się na terytorium wroga i chcą wkroczyć jak najdalej. Na nieskończonej szachownicy, z zaznaczoną "na środku" poziomą granicą, pionki przeskakują jeden nad drugim. Dokładniej: ruch polega na przeskoczeniu pionkiem nad innym znajdującym się na sąsiadującym polu - tylko poziomo lub pionowo - i zdjęciu pionka, który został przeskoczony.

  3. Teoria liczb

    Złociaków nigdy dosyć

    Wyobraźmy sobie, że trafiliśmy do dziwnego kraju, w którym jedynymi dostępnymi środkami płatniczymi są monety o nominałach |a i b: Formy płatności nie rozwinęły się na tyle, żeby płacić kartą lub czekiem, na domiar złego wybraliśmy się do cukierni, w której kasa jest zupełnie pusta i sprzedawca nie może wydać nam reszty. Nie chcąc tracić swoich złociaków, rozglądamy się za pysznościami w cenach |a + a;a + b;xa + yb ::: Niektórych kwot, oczywiście, nie daje się uzyskać z nominałów  a i |b; a niektóre można otrzymać na wiele sposobów.

  4. obrazek

    Początkowe ustawienie w grze Hexapawn

    Początkowe ustawienie w grze Hexapawn

    Gry, zagadki, paradoksy Mała Delta

    Hexapawn, czyli czego można nauczyć pudełka

    Zamiast analizować, czy gra jest sprawiedliwa, czy nie, zamiast szukać najlepszych strategii graczy, można stworzyć pewną maszynę, która część tej pracy wykona za nas. Trzeba jej objaśnić zasady, a potem z nią grać, niekoniecznie najlepiej - w końcu jeszcze nie przeanalizowaliśmy gry. Maszyna, grając, zapamiętując i wyciągając wnioski z przegranych oraz wygranych (co śmiało można zakwalifikować jako uczenie się), prędzej czy później zorientuje się, jak grać możliwie najlepiej, a więc ogrywać nas, o ile to tylko możliwe.

  5. obrazek

    Gwoli precyzji ustalmy, że trzymając przed sobą zetknięte połówki przeciętej bryły obrotowej (prawą i lewą), obracamy prawą z nich ruchem do siebie.

    Gwoli precyzji ustalmy, że trzymając przed sobą zetknięte połówki przeciętej bryły obrotowej (prawą i lewą), obracamy prawą z nich ruchem do siebie.

    Stereometria Mała Delta

    Sferostożki więcej i bardziej

    Taka sobie niewinnie wyglądająca bryłka. Ot, powstała z obrotu kwadratu dookoła jego przekątnej, przecięcia tego, co powstało, na dwie identyczne części (wzdłuż płaszczyzny kwadratu), przekręceniu połowy o  ○ 90 i doklejeniu do drugiej części (czekającej w tym czasie w bezruchu). Szczęśliwa całość - sferostożek (ang. sphericon).

  6. Gry, zagadki, paradoksy Mała Delta

    Czerwony Kapturek

    Dym zaczął radośnie buchać ze starego, ceglanego komina. To znak, że Czerwony Kapturek, właścicielka najbardziej czerwonego kubraczka w stumilowym lesie, rozpoczęła już swoje wyśmienite wypieki. Świeżutkie bułeczki dostaną wszyscy ci i tylko ci mieszkańcy lasu, którzy sami nie robią dziś wypieków...

  7. obrazek

    Planimetria Mała Delta

    Pozbądźmy się koła

    Dawno, dawno temu za górami, za lasami na Euklidesowych Równinach żyło sobie koło. Niezmiernie było dumne ze swej stałej szerokości. Chadzało ścieżkami, które miały szerokość równą jego średnicy, i jako jedyna figura zamieszkująca równiny mogło kręcić się przy tym jak szalone, stale podpierając obie krawędzie ścieżki.

  8. obrazek

    Stereometria Co to jest?

    Sferostożki i inne cudaki

    Bryła to stworzenie, z którym większość z nas poznała się w szkole podstawowej i które było przez nas oswajane przez kolejne lata edukacji. Znamy bliżej różne rodziny brył, takie jak wielościany, graniastosłupy, bryły obrotowe, foremne, platońskie. Oczywiście, można produkować nowe stworzenia, łącząc czy tnąc "podstawowe" gatunki, a jedynym ograniczeniem jest nasza wyobraźnia.

  9. Teoria liczb Mała Delta

    Kraina dwóch monet

    Wyobraźmy sobie, że trafiliśmy do dziwnego kraju, w którym jedynymi dostępnymi środkami płatniczymi są monety o nominałach 5 i 9. Formy płatności nie rozwinęły się na tyle, żeby płacić kartą lub czekiem, na domiar złego wybraliśmy się do cukierni, w której kasa jest zupełnie pusta i sprzedawca nie może wydać nam reszty...