Klub 44M - zadania IX 2013»Zadanie 665
o zadaniu...
- Zadanie pochodzi z artykułu Klub 44M - zadania IX 2013
- Publikacja w Delcie: wrzesień 2013
- Publikacja elektroniczna: 31 sierpnia 2013
- Artykuł źródłowy w wersji do druku [application/pdf]: (98 KB)
Dany jest równoległobok
Punkty
i
leżą
odpowiednio na bokach
i
odcinki
i
mają
jednakową długość. Dowieść, że odcinki
i
przecinają
się w punkcie, leżącym na dwusiecznej kąta


będzie punktem przecięcia odcinków
i
Przedłużamy
odcinek
do przecięcia z prostą
w punkcie
Z równoległości
oraz
wynikają
proporcje
Zatem i lewe strony mają jednakową wartość; a to znaczy,
że w trójkącie
odcinek
jest dwusieczną kąta przy
wierzchołku
(czy go nazwiemy
czy
to
wszystko jedno).