Klub 44F - zadania V 2017»Zadanie 638
o zadaniu...
- Zadanie pochodzi z artykułu Klub 44F - zadania V 2017
- Publikacja w Delcie: maj 2017
- Publikacja elektroniczna: 1 maja 2017
- Artykuł źródłowy w wersji do druku [application/pdf]: (104 KB)
Układ składa się z czterech jednakowych, lekkich prętów o długości
i lekkiej sprężyny o długości
Pręty połączone są przegubowo za pomocą małych kulek o jednakowych masach. Układ zamocowany jest w punkcie
i znajduje się w polu ciężkości. W stanie równowagi pręty tworzą kwadrat. Znaleźć częstość małych drgań układu, przy których punkt
porusza się po linii pionowej.


Równania ruchu punktów
i
mają postać:
jest masą przegubu,
są przyspieszeniami punktów
i
jest siłą sprężystości. Eliminując z tych równań siły reakcji
i
otrzymujemy
i
spełniają związki
Dotychczasowe równania są słuszne dla dowolnego kąta
ograniczymy teraz nasze rozważania do małych wychyleń z położenia równowagi, gdy
Wtedy
W rozważanym przybliżeniu lewa strona równania (1) ma postać
W stanie równowagi
stąd
otrzymujemy równanie ruchu punktu
dla małych wychyleń z położenia równowagi:
Szukana częstość drgań wynosi