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Abstract

It is often the case that the size of some data is fixed and it might
be encrypted all at once. Currently, in such a situation, we use a stream
cipher or a block cipher with some mode of operation which has to be im-
plemented additionally. Both of these options require storing additional
information such as an IV, a nonce or a MAC, which might be a sig-
nificant part of the data, if the data size is small. Unfortunately, up to
now, ciphers with a larger block size have required a larger diffusion layer,
which have taken up a lot of memory and made the cipher implementa-
tion harder. In this study a new method of constructing block ciphers
is proposed. The presented construction consists of parallel SP-networks
which recursively interchange data using a small diffusion layer, the size
of which is recursively doubled by a presented algorithm. The method
enables the creation of ciphers provably resistant to linear and differential
cryptanalysis. These would be easy to parallelize and would make it pos-
sible to use a small, easy to store diffusion layer. The minimum required
number of rounds for this method is derived. A proof is conducted, so
that every encryption algorithm created using this method is resistant to
linear and differential cryptanalysis under the given minimum required
number of rounds.

1 Introduction

Diffusion layers are one of the most important parts of block ciphers in provid-
ing resistance to differential and linear cryptanalysis. S-boxes may have a very
good differential uniformity and non-linearity, however, a cipher constructed by
using them could still be broken using differential or linear cryptanalysis if it
did not have a good enough diffusion layer. In SP networks a diffusion layer is
applied to the whole block at once which is effective if the diffusion layer has
a high branch number, but it is often the case that the diffusion layer is con-
structed of a few smaller ones, and even when those have high branch numbers,
the resulting one can still have a low branch number which leads to using a
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larger number of rounds in order to achieve a satisfying level of security. In this
article, I will first present a way to create a k2n+1 bit diffusion layer from a
2k bit diffusion layer with a certain property. This will be done in such a way
that the created one will also have this property and therefore its size could be
doubled using the same method and the process could be repeated indefinitely.
In the next section, I will show how to use a diffusion layer with the property
to create a cipher provably resistant to the linear and differential cryptanalysis
and then I will prove its resistance under the given minimum required number
of rounds.

2 Preliminaries

In order to be able to describe how to double a size of a diffusion layer, and
how to use that diffusion layer to create a cipher provably resistant to linear
and differential cryptanalysis, we first need to introduce a few definitions.

The notation:

� + - the addition of binary vectors in GF (2) or equivalently XOR of its
components, it can also be the standard addition of numbers when it is
clear from the context

� M t - the transposition of the matrix M

� ⊕ - the direct sum of matrices

� · - the dot product of vectors

� Z2 = {0, 1} - the set of all binary values

� Zm
2 - the set of all m-dimensional binary vectors

� the products of matrices are calculated in GF (2)

� || - concatenation of vectors, namely


a1

a2

...
ak1

 ||

b1
b2
...
bk2

 =



a1

a2

...
ak1

b1
b2
...
bk2


Definition 2.1. Two n-dimensional vectors a and b are halves of a vector v, if
v = a||b.
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Definition 2.2. Four n-dimensional vectors a, b, c, d are quarters of a vector v,
if v = a||b||c||d.

Definition 2.3. Four n× n matrices A,B,C,D are quarters of a matrix E, if

E =

[
A B
C D

]
.

Definition 2.4. A vector v is active, if v 6= ~0.

Definition 2.5. Function f is a diffusion layer, if there exists a binary matrix
A, such that f(x) = Ax.

Definition 2.6. Function f : Z2n
2 7→ Z2n

2 activates both halves, if for every
active n-dimensional vector v there exists a tuple of active n-dimensional vectors
a, b, c, d such that f(v||~0) = a||b and f(~0||v) = c||d, where ~0 is an n-dimensional
zero vector.

3 Doubling a size of a diffusion layer

Let M be an invertible binary matrix such that if a function L : Z2k
2 7→ Z2k

2

is defined by the formula L(x) = Mx, then L activates both halves and let M1,

M2, M3, M4 be the quarters of M , such that M =

[
M1 M2

M3 M4

]
. At the input

we have a 4k-dimensional binary vector v0 = a||b||c||d and a diffusion layer L
which takes only 2k bits, where a, b, c, d are quarters of v. Let’s denote quarters
of vi by Qi,1, Qi,2, Qi,3, Qi,4 and do the following:

(1) Diffuse Q0,1 and Q0,2.

v1 = L(Q0,1||Q0,2)||Q0,3||Q0,4.

(2) Diffuse Q1,3 and Q1,4.

v2 = Q1,1||Q1,2||L(Q1,3||Q1,4)

(3) Diffuse Q2,2 and Q2,3.

v3 = Q2,1||L(Q2,2||Q2,3)||Q2,4

(4) Diffuse Q3,1 and Q3,4.

v4 = Q3,2||Q3,3||L(Q3,1||Q3,4)

(5) Restore the order of the quarters.

v5 = Q4,3||Q4,1||Q4,2||Q4,4.

We can easily represent this transformation as a single diffusion layer L̄(v) =
M̄v, where

M̄ =


M1 0 0 M2

0 M1 M2 0
0 M3 M4 0
M3 0 0 M4

[M 0
0 M

]

The right factor of the product represents steps 1− 2 and the left, steps 3− 5.
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This representation is not useful computationally but by using it, we can note
a few facts about the diffusion as a single transformation, which will be useful,
if we want to double the size of M̄ . First of all, we can see that M̄ is invertible
because all the described steps are invertible. Since steps 1 − 4 involve only
reversible diffusion L of two quarters and step 5 changes just the order of the
quarters of v4. Secondly, L̄ maps 4k bits to 4k bits, so it is twice the size of L.
The only thing left to prove is that L̄ activates both halves.

Lemma 3.1. For every n-dimensional vector x and every n×n invertible matrix
A, Ax is active ↔ x is active.

Proof. Let’s suppose that Ax is not active and x is active, it means that Ax = ~0
and x 6= ~0. Matrix A is invertible by the definition, therefore there exists
A−1 such that A−1Ax = x. But for every 2k × 2k matrix B, we then have
BAx = B·~0 = ~0 6= x. Thus A is not invertible, which contradicts the assumption
that A is invertible, thus, by contradiction, we know that if x is active, then Ax
is active. There is also the case when x is not active, which means that x = ~0
=⇒ Ax = A ·~0 = ~0↔ Ax is not active.

Theorem 3.2. L̄ activates both halves.

Proof. It is enough to consider the case where only a single half of v0 is active.
In steps 1 and 2 there is no interaction between different halves, thus, from
Lemma 3.1, v2 has still only one active half. During steps 3 and 4, quarters
from different halves are diffused and during step 5 their order is restored.
There are two inactive quarters in the inactive half of v2 and at least one active
quarter in the active one, therefore the active quarter is diffused in step 3 or 4
along with one of the inactive quarters and since L activates both halves, there
is at least one active quarter in each half of v5.

Since M̄ is invertible and L̄ activates both halves, M̄ meets the requirements
to be put in place of M and be doubled using the same method. The result of
such doubling can be doubled again and so on.

Usually an s-box, not a vector, is called either differentially or linearly active
but in this case it is a more useful definition because it all comes down to
whether a difference between two vectors which is itself a vector, is non-zero
and whether a mask which is also itself a vector, is non-zero. Therefore for
a 4k-dimensional binary vector x, a 4k-dimensional input difference ∆x and a
4k-dimensional input mask Γx, we can examine the activity of the two halves of
∆y = L̄(x)+L̄(x+∆x) = L̄(∆x) and the activity of the halves of Γy = M̄−tΓx,
the relation between the input mask and the output mask has been proven in
[2].

Since L̄ activates both halves, if only one half of ∆x is active, then both
halves of ∆y are active. There is also the case when both halves of ∆x are
active, then from Lemma 3.1 we know that ∆y is active.
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In order to examine the activity of Γy, it is useful to notice that, since M̄
is invertible, M̄−t = (M̄ t)−1 is also invertible. We can deduce from this fact
and Lemma 3.1, that if Γx is active, then Γy is active. Let’s define the function
S : Z4k

2 7→ Z4k
2 with the formula S(x) = M̄−tx, which maps the input masks

to the output masks. To prove that S activates both halves, we need a few
additional lemmas.

Lemma 3.3. For every n × n matrix A, Ax is active for every n-dimensional
active vector x ↔ A is invertible.

Proof. We already know from Lemma 3.1 that if A is invertible, then Ax is
active for every n-dimensional active vector x, so it suffices to prove that if
A is not invertible, then there exists an active n-dimensional vector x such
that Ax is not active. A is not invertible ↔ function defined by the formula
f(x) = Ax is not a bijection ↔ there exists a pair of n-dimensional vectors
x, y : x 6= y∧f(x) = f(y)↔ Ax = Ay ↔ A(x−y) = ~0↔ A(x−y) is not active,
but x 6= y ↔ x− y 6= ~0↔ x− y is active.

Lemma 3.4. For every 2n × 2n matrix E, function f : Z2n
2 7→ Z2n

2 defined by
the formula f(x) = Ex activates both halves↔ quarters A,B,C,D of E are all
invertible.

Proof. Let v be an active 2n-dimensional vector. We have to prove that if one
half of an input to f is inactive, then both halves of the output are active.

f(v||~0) = E(v||~0) =

[
A B
C D

]
(v||~0) =

[
Av +B ·~0
Cv +D ·~0

]
=

[
Av
Cv

]
.

As proven in Lemma 3.3, Av and Cv are active for all active n-dimensional
vectors v ↔ A and C are invertible.

From the definition of activating both halves, there is a second case to con-
sider.

f(~0||v) = E(~0||v) =

[
A B
C D

]
(~0||v) =

[
A ·~0 +Bv

C ·~0 +Dv

]
=

[
Bv
Dv

]
.

As proven in Lemma 3.3, Bv and Dv are active for all active n-dimensional
vectors v ↔ B and D are invertible.

Lemma 3.5. If quarters A,B,C,D of an invertible matrix E are all invertible,
then quarters of E−1 are all invertible.

Proof. From the partitioned matrix inversion formula [6], since A and D are
invertible, we have

E−1 =

[
A B
C D

]−1

=

[
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
We can see that each quarter of E−1 is either an inversion of a matrix or a

product of inversions and matrices invertible by the definition, therefore all of
these quarters are invertible.
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Theorem 3.6. For every 2n × 2n matrix E, function defined by the formula
f(x) = Ex activates both halves↔ function defined by the formula g(x) = E−tx
activates both halves.

Proof. Let’s represent E as a partitioned matrix E =

[
A B
C D

]
, whereA,B,C,D

are quarters of E. It follows that E−t = (Et)−1 =

[
At Ct

Bt Dt

]−1

. From

Lemma 3.5 and the fact that At, Bt, Ct, Dt are all invertible, we know that
quarters of (Et)−1 = E−t are all invertible↔ from Lemma 3.4, g activates both
halves.

Theorem 3.7. S activates both halves.

Proof. From theorem 3.2, we know that L̄ activates both halves and from the-
orem 3.6 it follows that S activates both halves.

4 The method

In this section I will show how we can use a diffusion layer that activates both
halves to create a cipher provably resistant to linear and differential cryptanal-
ysis.

At the input there is a plaintext in the form of a c2n-dimensional binary vector
P and r + 1 round keys1 K1,K2, . . . ,Kr+1, each of them is c2n-dimensional
binary vector. During r rounds of encipherment, we want to transform the
input data into a ciphertext consisting of c2n bits. Let’s divide each of the
2n c bit parts into l not necessarily equal parts of lengths p1, p2, . . . , pl such
that

∑l
i=1 pi = c. To each of these parts, so to every X ∈ {1, 2, . . . , 2n}, we

want to assign a sequence of bijective s-boxes (SX,1, SX,2, . . . , SX,l), such that
SX,i : Zpi

2 7→ Zpi

2 . Let M be a c × c invertible binary matrix such that the
function defined by the formula L(x) = Mx activates both halves.

Substitution of all c bits in the part numbered X ∈ {1, 2, . . . , 2n} is defined
as follows, SX(x) = SX,1(x[1])||SX,2(x[2])|| . . . ||SX,l(x[l]), where x[i] is the i-th
part of x, of length pi. The only thing left to define is an SDS layer (substitute-
diffuse-substitute) of the whole state.

SDS(x1||x2|| . . . ||x2n) =

= S1(L(S1(x1)))||S2(L(S2(x2)))|| . . . ||S2n(L(S2n(x2n)))

where for all k : 1 ≤ k ≤ 2n, xk is a c-dimensional vector.

1As in the other ciphers, the round keys will usually be derived from a single main key.
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Let’s denote L doubled k times as L(k) (e.g. L(0) = L) and its matrix as
M (k). Application of L(k) applied in parallel to the whole c2n bits state x is
defined as (only for k ≤ n)

D(k)(x) = (M (k) ⊕M (k) ⊕ . . .⊕M (k)︸ ︷︷ ︸
2n−k times

)x

and the function which maps an input mask to an output mask is

S(k)(x) = (M (k) ⊕M (k) ⊕ . . .⊕M (k)︸ ︷︷ ︸
2n−k times

)−tx =

= ((M (k))−t ⊕ (M (k))−t ⊕ . . .⊕ (M (k))−t︸ ︷︷ ︸
2n−k times

)x

We define

ηk =

{
SDS, for k = 0

ηk−1 ◦D(k) ◦ ηk−1, for 0 < k ≤ n

The i-th round is then Ri(x) = ηn(x + Ki) and the encryption E(x) = (Rr ◦
Rr−1 ◦ . . . ◦R1)(x) +Kr+1. So the ciphertext is E(P ).

To define decryption, we need to define inversions of a few intermediate
functions.

SDS−1(x1||x2|| . . . ||x2n) =

= S−1
1 (L−1(S−1

1 (x1)))||S−1
2 (L−1(S−1

2 (x2)))|| . . . ||S−1
2n (L−1(S−1

2n (x2n)))

η−1
k =

{
SDS−1, for k = 0

η−1
k−1 ◦ (D(k))−1 ◦ η−1

k−1, for 0 < k ≤ n

R−1
i (x) = η−1

n (x+Ki)

and finally
E−1(x) = (R−1

1 ◦R
−1
2 ◦ . . . ◦R−1

r )(x+Kr+1)

5 Proving resistance to linear and differential
cryptanalysis

In order to prove resistance to linear and differential cryptanalysis of every
cipher created using the method above, we need to first introduce a few defini-
tions.

Definition 5.1. Active s-box is defined as an s-box given a non-zero input
difference or a non-zero output mask value.

Note: When an s-box is bijective, the s-box given a non-zero output differ-
ence or a non-zero input mask value is also an active s-box. [5]
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Definition 5.2. Number of active s-boxes in a c-dimensional binary vector x
is defined as W (x) = #{x[i] | i ∈ N ∧ 1 ≤ i ≤ l ∧ x[i] 6= ~0}.

Definition 5.3. Branch number of a c×c linear mapping D is given by B(D) =
mina∈Zc

2\{~0}
W (a) +W (D(a)). [1]

Lemma 5.4. For every c-dimensional binary active vector x, c-dimensional lin-
ear mapping D and every X ∈ {1, 2, . . . , 2n}, W (SX(D(SX(x))) +W (SX(x)) ≥
B(D)

Proof. Substitution does not change the number of active s-boxes because there
is not any interaction between different s-boxes, thus W (SX(D(SX(x))) =
W (D(SX(x))). Let y = SX(x), then, by the definition of B, W (SX(D(SX(x)))+
W (SX(x)) = W (D(y)) +W (y) ≥ B(D).

Definition 5.5. The number of active s-boxes during η0 = SDS is the sum of
numbers of active s-boxes in the input mask or difference of the first and the
second substitution.

From Lemma 5.4 we can see that the numbers of differentially and linearly
active s-boxes during η0 are greater than or equal to B(L) and B(S), respectively,
where S(x) = M−tx.

Definition 5.6. The number of active s-boxes during ηk = ηk−1 ◦D(k) ◦ ηk−1

is the sum of numbers of active s-boxes in the input mask or difference of the
first and the second ηk−1, where k, 1 ≤ k ≤ n, is an integer.

Definition 5.7. The number of active s-boxes during a round is equal to the
number of active s-boxes during the corresponding ηn.

Lemma 5.8. For all k ≤ n, there are at least t13kB(L) differentially active
s-boxes and at least t23kB(S) linearly active s-boxes during ηk, where t1 is the
number of active c2k bit parts in an input difference of ηk and t2 in its input
mask.

Proof. We prove the lemma by induction. The application of η0 consists of
two substitutions, with 2n parallel diffusions between them. Let’s denote the
number of active c bit parts in the input difference and mask of η0 as t1 and
t2, respectively. Those parts are substituted with no interaction between each
other and diffused in parallel, so during the diffusion there is also no interaction
between them. From Lemma 5.4 we know that during SDS of each active part,
there are at least B(L) differentially active s-boxes and B(S) linearly active
s-boxes and there are t1 and t2 such parts, thus there are at least t1B(L) =
t1B(L)30 differentially active s-boxes and t2B(L) = t2B(S)30 linearly active
s-boxes.

Let’s suppose that the assertion is true for some k. Then consider an appli-
cation of ηk+1, it consists of an application of ηk, a parallel diffusion of 2n−k−1

parts, each 2k+1c bit and of a second application of ηk. The input difference
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consists of t1 active parts and the input mask of t2 active parts, each part of
c2k+1 bits.

Let’s consider all of these parts that have only one active half and denote
the number of them as g1 and g2 in the input difference and mask of ηk+1,
respectively. During the first ηk, there are at least g13kB(L) differentially ac-
tive s-boxes and at least g23kB(L) linearly active s-boxes. After the parallel
diffusions of D(k+1), since both it and S(k+1) consist of parallel c2k+1 bit trans-
formations that activate both halves, both halves of all of these parts in the
output difference and mask of D(k+1) are active, the output difference and
mask are input difference and mask of the second ηk, respectively. Therefore,
there are at least 2g13kB(L) differentially active s-boxes and at least 2g23kB(S)
linearly active s-boxes during the second ηk, that are jointly, during both of
them, at least g13kB(L) + 2g13kB(L) = g13k+1B(L) differentially and at least
2g23kB(S) + g23kB(S) = g23k+1B(S) linearly active s-boxes.

Now, let’s consider all of these parts that have both halves active and denote
the number of them as u1 and u2, in the input difference and mask of ηk+1,
respectively. During the first ηk, there are at least 2u13kB(L) differentially
active s-boxes and at least 2u23kB(S) linearly active s-boxes. After the parallel
diffusions of D(k+1), from Lemma 3.1, we know that all of these parts remain
active, thus during the second ηk, there are at least u13kB(L) differentially active
s-boxes and at least u23kB(S) linearly active s-boxes, that is jointly, during
both of them, at least 2u13kB(L) + u13kB(L) = u13k+1B(L) differentially and
2u23kB(S) + u23kB(S) = u23k+1B(S) linearly active s-boxes.

If we add up these two distinct cases, we have at least

g13k+1B(L) + u13k+1B(L) = t13k+1B(L)

differentially active s-boxes and at least

g23k+1B(S) + u23k+1B(S) = t23k+1B(S)

linearly active s-boxes.
By induction, the assertion is true for all natural numbers up to n, after

which D(x) is undefined, for x > n.

Theorem 5.9. If an input difference and an input mask of a round are active,
then during the round there are jointly at least 3nB(L) differentially active s-
boxes and 3nB(S) linearly active s-boxes.

Proof. We have Ri(x) = ηn(x+Ki), adding a key does not change the number
of active s-boxes in an input difference because the key cancels out. It also does
not change the number of active s-boxes in an input mask because during the
linear cryptanalysis, the key is considered fixed and it is implicitly absorbed into
0 in a linear approximation [4], so the input mask and the input difference of ηn
are active. Thus, it follows immediately from definition 5.7 and Lemma 5.8 that
during a round there are jointly at least 3nB(L) differentially active s-boxes and
3nB(S) linearly active s-boxes.
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Definition 5.10. For every input and output difference ∆x,∆y ∈ Zpi

2 , the
propagation ratio of each SX,i is defined as follows:

RSX,i
p (∆x→ ∆y) =

#{x ∈ Zpi

2 | SX,i(x) + SX,i(x+ ∆x) = ∆y}
2pi

Definition 5.11. For every input and output mask Γx,Γy, the correlation
coefficient of each SX,i is defined as follows:

CSX,i
p (Γx→ Γy) =

#{x ∈ Zpi

2 | x · Γx = SX,i(x) · Γy}
2pi−1

− 1

Definition 5.12. The maximal propagation ratio amongst all s-boxes is defined
as

p = max
X,i,∆x 6=~0,∆y

RSX,i
p (∆x→ ∆y)

Definition 5.13. The maximal correlation coefficient amongst all s-boxes is
defined as

q = max
X,i,Γx,Γy 6=~0

CSX,i
p (Γx→ Γy)

It has been shown in [1] that the propagation ratio of a differential trail
is equal to the product of propagation ratios of the active s-boxes assuming
independence of the data entering s-boxes and it has also been shown there that
the correlation coefficient of a linear trail is equal to the product of correlation
coefficients of the active s-boxes assuming independence of the bits entering each
s-box.

Theorem 5.14. Assuming independence of the bits entering each s-box, the
propagation ratio of every differential trail over r rounds of the cipher is upper
bounded by p3nB(L)r and the correlation coefficient of every linear trail over r
rounds is upper bounded by q3nB(S)r.

Proof. It follows from the facts that the propagation ratio of a differential trail
can be represented as a product of 3nB(L)r propagation ratios, each upper
bounded by p and that the correlation coefficient of a linear trail can be repre-
sented as a product of 3nB(S)r correlation coefficients, each upper bounded by
q.

For a c2n bit cipher to be resistant to differential cryptanalysis it is a nec-
essary condition that there are no differential trails with the propagation ratio
higher than 21−c2n

and to be resistant to linear cryptanalysis it is a necessary
condition that there are no linear trails with correlation coefficient higher than
2−c2

n−1

over all but a few rounds (typically 2 or 3) [3]. Therefore, in order to
derive the minimal required number of rounds, we have to solve two inequalities
for r.

p3nB(L)r ≤ 21−c2n

↔ r ≥ 1− c2n

3nB(L)
logp(2)
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q3nB(S)r ≤ 2−c2
n−1

↔ r ≥ −c2
n−1

3nB(S)
logq(2)

Thus

r ≥
⌈

max

(
1− c2n

3nB(L)
logp(2),

−c2n−1

3nB(S)
logq(2)

)⌉
and it would be good to add a few rounds to this lower bound because we usually
look for trails over less than all rounds and also to gain some security margin.

The assumption of independence in most cases will not be true but as noted
in [1], it is close enough to the truth to provide a very good approximation of the
propagation ratio and the correlation coefficient. It is also worth mentioning
that the lack of existence of a single trail with the propagation ratio or the
correlation coefficient higher than some value does not provide an assurance of
a complete immunity to the differential and linear cryptanalysis but only of a
resistance to some extent because different trails can combine to give jointly a
significantly higher propagation ratio of a differential or a correlation coefficient
of a linear approximation. For example, the proof of AES’s immunity [3] to the
linear and differential cryptanalysis is similar to this and it has only been proven
there that there are no differential trails with the propagation ratio higher than
2−300 and that there are no linear trails with the correlation coefficient higher
than 2−150 over 8 rounds of encryption and therefore the proof presented here
should be considered correct on the same basis and with the same restrictions
as the proof of AES’s security.

6 Optional changes

There are a few things that might be changed in the cipher created this way,
if one has reasons to do so, one might:

� Add a key after or before each diffusion during each round, as in SP-
networks

� Replace η0 with a customized SP-network instead of SDS. If during such
an SP-network, there are at least t1 differentially active s-boxes and at
least t2 linearly active s-boxes, it is easy to prove that during each round
created with the method, there are at least 3nt1 differentially active s-
boxes and 3nt2 linearly active s-boxes.

7 Arguments to use the presented method

There are a few reasons for which one might want to use the presented method:

� Being able to create a cipher with a large block size without using a large
diffusion layer.
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� Easy parallelization of a doubled diffusion layer, since steps 1 and 2 of the
doubling can be run in parallel as well as steps 3 and 4.

� Easy parallelization of the encryption round, since both the substitution
and the doubled diffusions are easy to run in parallel.

8 Warning

I would like to remind that a cipher created using the described method still
has to be analysed in the context of the other attacks.
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