Przeskocz do treści

Delta mi!

  1. Matematyka

    O uogólnieniach i uszczególnieniach problemów matematycznych

    W trakcie lektury artykułu Piotra Chrząstowskiego-Wachtela o uogólnieniach (Delta 2/2020) przypomniałem sobie o kilku innych problemach matematycznych, które podlegają opisanej tam zasadzie. Przypomnę - problem postawiony w pewnym szczególnym przypadku może okazać się trudniejszy do udowodnienia niż problem ogólny. Z drugiej strony wiem, że czasami rozwiązanie przypadku szczególnego daje gotowe rozwiązanie przypadku ogólnego. Chciałbym przybliżyć Czytelnikowi kilka innych przykładów takiego postępowania, które poznałem w trakcie studiów oraz podczas wędrówki po ciekawych problemach matematycznych.

  2. obrazek

    Stereometria

    Czego jeszcze nie wiedzieliśmy o bryłach platońskich?

    "Bryły platońskie" to inna nazwa wielościanów foremnych. W przestrzeni trójwymiarowej jest ich dokładnie 5 i są to: czworościan, sześcian, ośmiościan, dwunastościan oraz dwudziestościan foremny. Ich historia sięga czasów starożytnych i wydawałoby się, że po ponad dwóch tysiącach lat wiemy o nich już absolutnie wszystko.

  3. Teoria liczb

    Trójkąt harmoniczny – bliźniak trójkąta Pascala

    Trójkąt Pascala zna praktycznie każdy. Widoczny poniżej z lewej strony trójkąt ma tę własność, że każda liczba jest sumą dwóch liczb stojących bezpośrednio nad nią (z wyłączeniem wierzchołka trójkąta oraz jego prawego i lewego boku, gdzie znajdują się jedynki). Z kolei w trójkącie po prawej stronie każda liczba jest sumą dwóch liczb stojących bezpośrednio pod nią. Na jego prawym oraz lewym boku znajdują się odwrotności kolejnych liczb naturalnych - liczby harmoniczne. Taki obiekt nazywa się trójkątem harmonicznym. Konstrukcję obu trójkątów można oczywiście kontynuować w nieskończoność...

  4. Matematyka

    Trójkąt Sierpińskiego gra o życie

    Tytuł niniejszego artykułu jest zestawieniem dwóch pozornie odległych pojęć matematycznych. Pierwszym z nich jest trójkąt Sierpińskiego - jeden z najlepiej rozpoznawalnych fraktali. Drugim jest gra w życie - automat komórkowy opisany w 1970 roku przez Johna Conwaya.

  5. Zastosowania matematyki

    Nieoczekiwane zastosowania szeregu harmonicznego

    Problem 2. Do dyspozycji mamy nieograniczoną liczbę prostopadłościennych cegieł o jednakowym rozmiarze i masie. Cegły ustawiamy jedna na drugiej - bez użycia żadnych materiałów klejących. Jak bardzo najwyżej położona cegła może być wysunięta w stosunku do cegły położonej najniżej? Rozkład masy w każdej cegle jest jednorodny.

  6. Geometria

    Anomalie kul i kostek

    Kwadrat i koło mają swoje naturalne odpowiedniki trójwymiarowe (sześcian i kula), czterowymiarowe, pięciowymiarowe i dowolnie wymiarowe. Pisząc "dowolny wymiar", mamy na myśli więcej osi układu, czyli też współrzędnych opisujących obiekt. Wyobraźmy sobie mianowicie przestrzeń trójwymiarową (co nie jest specjalnie trudne). Każdy punkt takiej przestrzeni można opisać za pomocą zestawu trzech współrzędnych |(x;y;z ): Gdy opisujemy położenie punktu na płaszczyźnie, myślimy zwykle o układzie kartezjańskim i parze współrzędnych (x;y ): Opisując punkt na prostej, używamy tylko jednej liczby. Gdy zaś chcemy opisać przestrzeń czterowymiarową, lub ogólniej |n -wymiarową, używamy zestawu n liczb |(x1; :::;xn):

  7. Algebra Mała Delta

    Pierwiastkowanie pod kreską

    Każdy z nas obcował z działaniami pisemnymi na liczbach naturalnych - dodawaniem, odejmowaniem, mnożeniem i dzieleniem. Z pisemnym potęgowaniem można się rozprawić, wielokrotnie stosując pisemne mnożenie. Dzieląc dwie liczby całkowite, możemy otrzymać pełne rozwinięcie dziesiętne (okresowe lub skończone) albo uzyskać dowolną dokładność wyniku. Tak, działania pisemne są sprytne. A co z pierwiastkowaniem? Czy istnieje metoda na pisemne wyznaczanie kolejnych cyfr rozwinięcia dziesiętnego liczby  √ --- | 17? Odpowiedź brzmi: tak.

  8. obrazek

    Teoria liczb Mała Delta

    Obsesja dużych liczb

    Kiedy miałem kilka, kilkanaście lat, wraz ze starszym bratem często graliśmy w grę. Należało w swojej kolejce podać liczbę większą od wskazanej przez poprzednika. Przegrywał oczywiście ten, kto nie był w stanie podać liczby większej. Czasami ponosiła nas fantazja i mówiliśmy "nieskończoność" albo "nieskończoność plus nieskończoność". Dziś już wiem, że nieskończoność liczbą nie jest, a działania na nieskończonościach są bardziej wyrafinowane, niż podejrzewałem. Gdyby i Tobie, drogi Czytelniku, przyszło kiedyś wymienić (albo usłyszeć) jakąś dużą liczbę, możesz sięgnąć do poniższej listy. Nie są to bowiem byle jakie liczby...

  9. Matematyka Mała Delta

    Fraktale z zer i jedynek

    Tradycyjnie fraktale kojarzą nam się (często) z ładnymi rysunkami figur, które wykazują pewien zestaw cech odróżniających je od zwykłych obiektów. Nie precyzujemy tutaj uniwersalnego zestawu, gdyż sama definicja fraktala nie jest uniwersalna. W większości sytuacji chcemy, aby fraktal miał złożoną strukturę, spełniał pewne cechy samopodobieństwa oraz by nie dało się go zbyt prosto opisać geometrycznie. Mimo to często można go opisać względnie prosto pewnymi regułami rekurencyjnymi wykonywanymi na obiekcie startowym (lub zestawie takich obiektów).

  10. Gry, zagadki, paradoksy

    Sprawiedliwie, sprawiedliwiej, najsprawiedliwiej

    Pewnego słonecznego lipcowego poranka Alfred i Berenika ochoczo wybrali się na gdańską plażę. Mieli nadzieję, że wczorajsza burza przysporzy im mnóstwa ciekawych znalezisk i spostrzeżeń. Piasek, fale oraz to, co zdołały wyrzucić na brzeg, to niezwykle bogate źródło ciekawostek. Natknęli się na kamień poprzetykany dziurami, jakby był zjedzony przez korniki, oraz muszlę, która kształtem przypominała kardioidę - całkiem niedawno poznali to słowo. Ale najciekawsze zdarzyło się na koniec. Kiedy właściwie chcieli już wracać do domu, zauważyli nieduży woreczek zawiązany starannie sznurkiem...

  11. Teoria liczb

    Od Prouheta–Tarry'ego–Escotta do Thuego–Morse'a

    Do jednych z najstarszych problemów w historii matematyki należy niewątpliwie zaliczyć równania diofantyczne, czyli równania o dziedzinie rozwiązań ograniczonej do liczb całkowitych. Obecną nazwę zawdzięczają one Diofantosowi, greckiemu matematykowi żyjącemu w III wieku naszej ery w Aleksandrii. Swoje rozważania na temat takich równań Diofantos zawarł w serii ksiąg pod tytułem Arytmetyka. Studiując jedną z nich, Pierre de Fermat - żyjący w XVII wieku francuski prawnik i matematyczny samouk - uznał, że pewne zawarte w niej równanie nie może mieć rozwiązań, o czym raczył poinformować przyszłych czytelników w słynnej uwadze, zamieszczonej na marginesie (czytanej przezeń książki oraz niniejszego artykułu).

  12. Teoria liczb

    Wesołe liczby

    Czy jest coś weselszego na twarzy drugiego człowieka od jego uśmiechu? To w pewnym sensie filozoficzne pytanie potrafi wzbudzić wiele zainteresowania u każdego człowieka. Wszak każda osoba posiada swój własny kanon piękna oraz szczęścia...