


CONTENTS
ISSUE 7 (590)

Statistics with imprecise data
Przemysław Grzegorzewski str. 1

Magic fives
Oskar Skibski str. 6

Virus means poison
Magdalena Fikus str. 8

All models are wrong,
so which ones are useful?
Przemysław Biecek str. 9

A boy or a girl?
Łukasz Rajkowski str. 12

News of Physics
New answers, new questions

str. 14

Searching for order
Andrzej Dąbrowski str. 15

Problems str. 19

Club 44 str. 20

Are these distributed uniformly?
Radosław Poleski str. 21

Straight from Heaven: Wooden clock str. 23

The Night Sky in July str. 23

Markov Chains – part 1
Bartłomiej Bzdęga str. 25

In the next issue:
Fractal world of paper ribbon.

Delta Monthly Magazine – Mathematics, Physics,
Astronomy, Informatics is published by the University of
Warsaw in collaboration with scientific societies: the Polish
Mathematical Society, Polish Physical Society, Polish
Astronomical Society, and Polish Information Processing
Society.

Editorial Committee: dr Waldemar Berej,
doc. dr Piotr Chrząstowski-Wachtel,
dr Krzysztof Ciesielski, prof. UJ – President,
prof. dr hab. Bożena Czerny, dr Andrzej Dąbrowski,
dr Tomasz Greczyło, prof. UWr, dr Adam Gregosiewicz,
dr Andrzej Grzesik, prof. dr hab. Agnieszka Janiuk,
dr hab. Artur Jeż, prof. UWr., dr hab. Bartosz Klin,
prof. dr hab. Andrzej Majhofer – vice-President,
dr Adam Michalec, prof. dr hab. Damian Niwiński,
prof. dr hab. Krzysztof Oleszkiewicz,
dr hab. Krzysztof Pawłowski, prof. PAN, dr Milena Ratajczak,
dr hab. Radosław Smolec, prof. PAN,
prof. dr hab. Paweł Strzelecki, prof. dr hab. Andrzej Wysmołek.

Editorial Board: Wiktor Bartol, Michał Bejger,
Szymon Charzyński – Editor-in-Chief Agnieszka Chudek,
Anna Durkalec, Marta Gródek , Katarzyna Małek,
Michał Miśkiewicz, Wojciech Przybyszewski,
Łukasz Rajkowski – Deputy Editor-in-Chief Anna Rudnik,
Krzysztof Rudnik, Oskar Skibski, Marzanna Wawro – secretary
of the Editorial Board.

Correspondence address:
Delta’s editorial office, ul. Banacha 2, room 4020,
02-097 Warszawa
e-mail: delta@mimuw.edu.pl tel. 22-55-44-402.
Covers and graphics:
Anna Ludwicka Graphic Design & Serigrafia.
Typeset using LATEX by the Editors.
Printed at Poligrafia NOT poligrafianot.pl

Subscription:
Garmond Press: www.garmondpress.pl
Kolporter: www.kolporter.com.pl (institutions only)
RUCH S.A.: www.prenumerata.ruch.com.pl

Back Issues (from 1987 onwards) can be purchased in person
at the Editorial Office or ordered via email.

Price per copy: for the last 12 months, 6 PLN; for earlier issues,
3 PLN.

Website (including archived
articles, links, etc.):
deltami.edu.pl

You can also find us on
facebook.com/Delta.czasopismo

Publisher: University of Warsaw



Dear Reader,
Data is one of the resources on which modern
civilization is built. Like most resources, it
requires processing before it becomes fully useful.
The intellectual refinery that humanity has
developed to deal with the abundant deposits of
information is broadly termed statistics. Statistics
also serves as a common denominator for the
articles published in this edition of Delta, the
Polish popular science monthly that you are
holding in your hands. In almost 50 years of its
history it has been striving to bring the subject
areas that it covers – mathematics, informatics,
physics and astronomy – closer to its readers.
In a similar way, statistics brings the knowledge
hidden in data closer to researchers and, in turn,
the society.

The creation of this issue is correlated with the 34th
conference “European Meeting of Statisticians” held in
Warsaw from July 3rd to 7th, 2023. The local organization of
the conference is by the Polish Mathematical Society, Warsaw
University of Technology, and the University of Warsaw; the
latter is also a publisher of Delta. The participants have
been given copies of the English version of this edition of
Delta. It is true that participants of this conference hardly
need an additional education in statistics, but we believe
that everyone will find some intellectual stimulation on
these pages, regardless of their scientific background and
experience.

We wish you pleasant reading and, if you are a participant of
the conference, a memorable event.

Editorial Board

Statistics with imprecise data Przemysław GRZEGORZEWSKI*
Statistics might be perceived as an art of making decisions in the presence of* Faculty of Mathematics and Information

Science, Warsaw University of
Technology uncertainty. It delivers tools for describing and explaining reality as well as

for making predictions and verifying hypotheses. For a long time, uncertainty
has been identified with randomness, and consequently, probability has been
perceived as the only well-grounded theory of uncertainty. However, during
the last fifty years, several approaches extending or orthogonal to the classical
probability theory have appeared. A common feature of these new approaches is
an attempt to soften the classical methods so that they can more easily adapt to
the factual nature of the data available and deal with other types of uncertainty,
such as imprecision.

Uncertainty

Randomness Imprecision

It is important to remember that imprecision as a concept itself is not entirely
unambiguous. Quite often the results of an experiment are imprecise due to
inaccuracy of the measuring apparatus or errors made by the persons making
the measurements. Sometimes the desired measurement is so difficult that its
result, as a rule, should be treated as highly uncertain. It may also happen that
the exact value of a variable is intentionally hidden for some confidentiality
reasons. In all these situations data are often recorded as set-valued objects
(e.g. as intervals) containing the exact but unknown values so a set-valued
observation A delivers incomplete information about the point quantity x: we
know only that A contains x but the true value of x remains unknown. Hence
A represents the epistemic state of the subject. But there are also situations
when the experimental data appear as essentially imprecise. A typical case is
the analysis of perceptions collected from a human when there is no objective
value behind (like the taste or mood). Another example refers to objects or
phenomena with an intrinsically gradual representation subject to variability
in nature, with fuzzy or changing boundaries, flexible time intervals or rating
scales, etc. Each such observation represents an objective entity, even if it is
vague, and hence corresponds to ontic imprecision.
A convenient method of mathematical modeling of imprecision was indicated by
Lotfi A. Zadeh (1921–2017) who introduced fuzzy set theory as an extension of
the classical set theory. Zadeh, one of the most outstanding thinkers of the current
time, realized that although we are used to dividing everything into “yes” and “no”
or to black and white, the entire world is in shades of grey. His famous statement
that everything is a matter of degree became the main idea behind fuzzy logic and
its impressive applications. It is worth noting that fuzzy logic is actually not a
“fuzzy” logic, but a logic that describes and tames imprecision.
A fundamental Zadeh’s concept is a fuzzy set. Let U be a universe of discourse.L.A. Zadeh, Fuzzy sets, Information and

Control 8 (1965), 338–353. A fuzzy set A in U is identified with a mapping, called a membership
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function A : U → [0, 1], which assigns to each object x ∈ U a real number in
the interval [0, 1], so that A(x) represents the degree of membership of x into A.
Thus a fuzzy set A may be perceived as a (standard) subset of U × [0, 1]

A = {(x, A(x)) : x ∈ U, A(x) ∈ [0, 1]}.

The interpretation of the membership function is natural: if A(x) = 1 then we

Note that in the set theory functions
f : X → Y are usually defined as sets;
more precisely, subsets of X × Y such that
for all x ∈ X there exists an unique y ∈ Y
satisfying (x, y) ∈ f . In this sense f(x) is
only a notational convention to denote y
for which (x, y) ∈ f . are sure that element x belongs to A, while A(x) = 0 means that x does not

belong to A. In all other cases, i.e. if A(x) ∈ (0, 1), we have a partial membership
(belongingness) to A. It means that if A(x) is close to 1 then the degree of
membership of x in A is high, while if A(x) is close to 0 then the degree of
membership of x in A is low. If A(x) ∈ {0, 1} for all x ∈ U then A is a set in
the classical meaning (each “usual” set is a fuzzy set whose membership function
is its characteristic function).

Another important notion connected with a fuzzy set is the so-called α-cut. For
each α ∈ [0, 1] the α-cut of a fuzzy set A, denoted as Aα, is given by

Aα =
{

{x ∈ U : A(x) ⩾ α} if α ∈ (0, 1],
cl{x ∈ U : A(x) > 0} if α = 0,

where cl stands for the closure (for now on we assume that U is equipped with
such operation). In other words, the α-cut is a “usual” subset of U whose degree
of belonging to A is not less than α. It can be shown that every fuzzy set is
completely characterized by a family of all its α-cuts {Aα}α∈[0,1]. Two α-cuts are
of special interest: A1 known as the core, which contains all values which are
fully compatible with the concept described by A and A0 called the support,
which are compatible to some extent with the concept modeled by A.

An important subfamily of fuzzy sets are fuzzy numbers. We say that A is
a fuzzy number if A : R → [0, 1] such that its α-cuts for each α ∈ [0, 1] are
nonempty closed intervals. An example of a fuzzy number is shown in Fig. 1.

1 A(x)

α

Aα

Fig. 1. A membership function A(x) of a
fuzzy number A. Example. Gamonedo cheese is a kind of blue cheese produced in Asturias

(northern Spain). It experiences a smoking process and later on is left to settle
in natural caves or a dry place. To maintain the quality of the cheese, experts
(tasters) express their subjective perceptions about different characteristics
of the cheese, such as visual parameters (shape, rind, appearance), texture
parameters (hardness and crumbliness), olfactory-gustatory parameters (smell
intensity, smell quality, flavor intensity, flavor quality, and aftertaste) and an
overall impression of the cheese. Recently tasters were asked to express their
subjective perceptions about the quality of the Gamonedo cheese by using
fuzzy numbers. This type of fuzzy number is the most commonly used for fuzzyRamos-Guajardo A.B., et al., Applying

statistical methods with imprecise data
to quality control in cheese
manufacturing, In: Grzegorzewski P.,
et al. (Eds.), Soft Modeling in Industrial
Manufacturing, Springer 2019,
pp. 127–147.

descriptions both because is easy to understand by the tasters and simple in
further processing. Valuation of the different features of each cheese is made
over a graduate scale ranging from 0% (for lowest quality) to 100% (for highest
quality). The 0-level is the set of values considered by a tester as compatible
with his opinion to some extent, i.e., he thinks it is not possible that the quality
is out of this set. The 1-level is the set of values considered as fully compatible
with his opinion. For example, Fig. 2 illustrates a situation of a tester who
believes that a given cheese meets the quality requirements in terms of the
examined feature in 70–80%. At the same time, he is undoubtedly convinced
that the quality requirements are satisfied with not lower than 50% but not
higher than 90%.

Solution to Problem M 1750.
Consider any arrangement of numbers.
Note that the numbers from 1 to 2022
represent at most 2022 rows and 2022
columns. Therefore, there exists a row
and a column that contain only numbers
greater than 2022. The product of any
two of these numbers is at least
2023 · 2024, which is greater than any
number on the board. This means that
there is no arrangement of numbers
satisfying the conditions stated in the
problem.

0

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 2. An exemplary opinion of a taster expressed by a trapezoidal fuzzy set.

As is seen in the figure, both 0-level and 1-level are linearly interpolated to get
the so-called trapezoidal fuzzy set used later to represent this tester’s personal
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valuation. A sample of tester’s opinions modeled with trapezoidal fuzzy sets is
given in Fig. 3.
1

0 10 20 30 40 50 60 70 80 90 100

Fig. 3. A sample of tester’s opinions modeled with trapezoidal fuzzy sets.

More formally, we say, that A is a trapezoidal fuzzy number if its
membership function is given by

(1) A(x) =


x−a1
a2−a1

if a1 ⩽ x < a2,

1 if a2 ⩽ x ⩽ a3,
a4−x
a4−a3

if a3 < x ⩽ a4,

0 otherwise,

where a1, a2, a3, a4 ∈ R such that a1 ⩽ a2 ⩽ a3 ⩽ a4. Thus, since a trapezoidal
fuzzy number (1) is characterized completely by four real numbers, it is often
denoted as A = (a1, a2, a3, a4)T .

Before we take the next step we have to define some basic operations onIt is worth noting that a sum of
trapezoidal fuzzy numbers is also a
trapezoidal fuzzy number, i.e., if
A = (a1, a2, a3, a4)T and
B = (b1, b2, b3, b4)T then

A + B =
= (a1 + b1, a2 + b2, a3 + b3, a4 + b4)T .

fuzzy numbers. Although one can introduce these operations directly on
membership functions it seems that it is easier to do this equivalently as
α-cut-wise operations on intervals. In particular, the sum of two fuzzy numbers
A and B is given by the Minkowski addition of the corresponding α-cuts (see
Fig. 4), i.e. for all α ∈ [0, 1]
(2) (A + B)α =

[
inf Aα + inf Bα, sup Aα + sup Bα

]
.

1 A(x) B(x)

α

Aα Bα

(A + B)(x)

(A + B)α

Fig. 4. Addition of fuzzy numbers A and B.

Similarly, the product of a fuzzy number A by a scalar θ ∈ R is defined by theThe product of a trapezoidal fuzzy
number A = (a1, a2, a3, a4)T by a scalar θ
is a trapezoidal fuzzy number, i.e.

θ · A =
{

(θa1, θa2, θa3, θa4)T if θ ⩾ 0,

(θa4, θa3, θa2, θa1)T if θ < 0.

Minkowski scalar product for intervals (see Fig. 5), i.e. for all α ∈ [0, 1]
(3) (θ ·A)α =

[
min{θ inf Aα, θ sup Aα}, max{θ inf Aα, θ sup Aα}

]
.

1 A(x)

α

Aα

(−1.5·A)(x)

(−1.5·A)α

Fig. 5. The product of a fuzzy number A by a scalar.

Unfortunately, in general, A + (−1·A) ̸= 1{0} (see Fig. 6). Consequently, the
Minkowski-based difference does not satisfy, in general, the addition/subtraction
property that (A + (−1 · B)) + B = A.

A(x)(−1·A)(x)

(
A + (−1·A)

)
(x)

Fig. 6. Problems with subtraction of fuzzy numbers.
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To overcome some of the problems associated with the lack of a satisfying
difference, especially in constructing tools for statistical reasoning based

Solution to Problem M 1752.
Let us observe that for any M, a, b ∈ [0, 1]
such that M ⩾ a, b, the following
inequality holds:

(M − a)(M − b)(1 − bM) ⩾ 0,

After some transformations, we obtain:
(1 − bM + b

2)(1 − aM + M
2) ⩾ 1 − ab + b

2
.

To prove the inequality for n = 2, it is
sufficient to take a = b = x1 and M = x2
in the above inequality.
Assume that the inequality holds for
some n; we will deduce its validity for
n + 1. Without loss of generality, assume
that xn+1 = max{x1, . . . , xn+1}. Using
the above inequality with b = xn,
M = xn+1, and x1 = a, we obtain:

(1 − xnxn+1 + x
2
n)(1 − xn+1x1 + x

2
n+1) ⩾

⩾ (1 − xnx1 + x
2
n).

Therefore,

n+1∏
cycle

(1 − xixi+1 + x
2
i ) ⩾

⩾

n∏
cycle

(1 − xixi+1 + x
2
i ) ⩾ 1,

where “cycle” denotes the cyclic product.
We complete the proof by invoking the
principle of mathematical induction.

on fuzzy observations, an alternative approach utilizing distances is
often considered. Let us define the following distance between two fuzzy
numbers A and B

(4) D(A, B)=

√√√√√ 1∫
0

[
(inf Aα−inf Bα)2 + (sup Aα−sup Bα)2

]
dα.

Indeed, (4) defines a metric (in the sense explained in details in e.g. Jarosław
Górnicki’s article from Delta 5/2021). It is clear that D(A, B) ⩾ 0 and
D(A, B) = 0 if and only if A = B. Proving that D(A, B) + D(B, C) ⩾ D(A, C)
(triangle inequality) is slightly less trivial and we leave is as an exercise to the
reader.

Suppose, we observe independently two fuzzy random samples x = (x1, . . . , xn)
and y = (y1, . . . , ym) drawn from two populations (each xi and yi is a fuzzy
number). We want to check if there is a significant difference between these two
populations. To this end we measure the distance (4) between the arithmetic
means of these samples. Note that we already know how to compute an
arithmetic mean of fuzzy numbers (which is itself a fuzzy number) as we have
tools of adding them together and multiplying by real numbers. But is a specific
distance between means, like 3.14, large or small? This is where the statistics
come into the picture.

In statistical jargon our goal is to verify the null hypothesis H0 that both
samples come from the same distribution, against the alternative hypothesis that
the population distributions differ. If the null hypothesis holds we expect that
both sample means would not differ too much. On the other hand, a significant
difference between the two sample means may indicate that the samples under
study come from different distributions.

To decide whether the measurement is large enough to conclude as significant
statisticians often use the notion of p-value. In our case it is the probability,
under the assumption that the null hypothesis is true, of getting at least as great
distance between means as the distance observed. Intuitively, if this probability
is low, we have a good reason to reject the null hypothesis. The problem is that
in this case we cannot compute it exactly as the null hypothesis merely says
that the two populations can be treated as one but it does not give us a specific
description of this population! We need to resort to another clever idea.

Let v be the concatenation of the two samples, i.e. vi = xi if 1 ⩽ i ⩽ n and
vi = yi−n if n + 1 ⩽ i ⩽ N , where N = n + m. Now, let v∗ denote a permutation
of the initial dataset v. Then the first n elements of v∗ are assigned to the
first sample x∗ and the remaining m elements to y∗. In other words, it works
like a random assignment of elements into two samples of the size n and m,
respectively. Each permutation corresponds to some relabeling of the combined
dataset v. Please note that if H0 holds, i.e. both samples come from the
same distribution, then we are completely free to exchange the labels x or y
attributed to particular observations – this will not change the randomness
behind them. As a consequence we can estimate the true p-value from the data
by taking a fraction of all possible permutations v∗ that yield a larger distance
between means of x∗ and y∗ that the one observed.

Formally this can be expressed asEquation (5) can be treated as a
definition of the true p-value,
conditioning on the event that our
samples sum up (as sets) to v. This
approach is somewhat standard in
designing so called nonparametric tests,
like runs test, described in details in an
article of the same name in Delta 9/2017.

(5) p-value = 1
N !

∑
v∗

1(T (v∗) ⩾ t0),

where the sum ranges over all possible permutations v∗ of v, T (v∗) is the
distance between means of x∗ and y∗ and t0 is the observed distance between
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means of x and y. The value of 1(condition) is 1 if condition is met and 0
otherwise.

Formula (5) can be further simplified, using the fact that the permutations can
be split into groups of size n!m! each, which give the same means of x∗ and y∗

(those groups are permutations that can be obtained by each other by permuting
first n and last m observations). Even in this case number of summands (which
becomes

(
N
n

)
) grows exponentially with N (given that n/N is kept at fixed

level).

Therefore, instead of considering all possible permutations we consider an
approximate distribution obtained by drawing randomly a large number of
samples (permutations) with replacement.Table 1. Opinions of two experts

concerning the overall impression on the
total of 78 samples of the Gamonedo
cheese, cf. Ramos-Guajardo et al. (2019)
Each entry refers to a different sample.

Expert 1 Expert 2

(65, 75, 85, 85) (50, 50, 63, 75)
(35, 37, 44, 50) (39, 47, 52, 60)
(66, 70, 75, 80) (60, 70, 85, 90)
(70, 74, 80, 84) (50, 56, 64, 74)
(65, 70, 75, 80) (39, 45, 53, 57)
(45, 50, 57, 65) (55, 60, 70, 76)
(60, 66, 70, 75) (50, 50, 57, 67)
(65, 65, 70, 76) (65, 67, 80, 87)
(60, 65, 75, 80) (50, 50, 65, 75)
(55, 60, 66, 70) (50, 55, 64, 70)
(60, 65, 70, 74) (39, 46, 53, 56)
(30, 46, 44, 54) (19, 29, 41, 50)
(60, 65, 75, 75) (40, 47, 52, 56)
(70, 75, 85, 85) (54, 55, 65, 76)
(44, 45, 50, 56) (59, 65, 75, 85)
(51, 56, 64, 70) (50, 52, 57, 60)
(40, 46, 54, 60) (60, 60, 70, 80)
(55, 60, 65, 70) (50, 54, 61, 67)
(80, 85, 90, 94) (40, 46, 50, 50)
(80, 84, 90, 90) (44, 50, 56, 66)
(65, 70, 76, 80) (60, 64, 75, 85)
(75, 80, 86, 90) (54, 56, 64, 75)
(65, 70, 73, 80) (50, 50, 60, 66)
(70, 80, 84, 84) (44, 46, 55, 57)
(55, 64, 70, 70) (59, 63, 74, 80)
(64, 73, 80, 84) (49, 50, 54, 58)
(50, 56, 64, 70) (55, 60, 70, 75)
(55, 55, 60, 70) (44, 47, 53, 60)
(60, 70, 75, 80) (19, 20, 30, 41)
(64, 71, 80, 80) (40, 44, 50, 60)
(50, 50, 55, 65) (50, 50, 59, 66)
(50, 54, 60, 65) (50, 53, 60, 66)
(65, 75, 80, 86) (50, 52, 58, 61)
(50, 55, 60, 66) (60, 65, 72, 80)
(40, 44, 50, 50) (50, 50, 55, 60)
(70, 76, 85, 85) (30, 34, 43, 47)
(44, 50, 53, 60) (19, 25, 36, 46)
(34, 40, 46, 46) (53, 63, 74, 80)
(40, 45, 51, 60)
(84, 90, 95, 95)

Let v∗
1 , v∗

2 , . . . , v∗
K be some random permutations of v (where K is usually not

smaller than 1000). Then the approximate p-value of our test is given by

(6) p-value ≃ 1
K

K∑
k=1

1(T (v∗
k) ⩾ t0).

Example. Now we utilize some data given in Ramos-Guajardo et al. (2019)
to compare the opinions of the two experts about the overall impression of the
Gamonedo cheese. The trapezoidal fuzzy sets corresponding to their opinions
are gathered in Table 1. There we have two observations of independent samples
x = (x1, . . . , xn) and y = (y1, . . . , ym) of sizes n = 40 and m = 38, respectively.
Numbers in parentheses correspond to the notation used to describe trapezoidal
fuzzy numbers, e.g. x1 = (65, 75, 85, 85)T , y1 = (50, 50, 63, 75)T , etc. Our problem
is to check whether there is a general agreement between these two experts. To
reach the goal we verify the following null hypothesis H0 stating there is no
significant difference between experts’ opinions, against that their opinions on
the cheese quality differ.

Simple calculations on data from Table 1 lead to means
x = (57.65, 63.20, 69.18, 73.48)T and y = (47.34, 51.21, 59.87, 66.84)T .

Substituting these results into (4) we obtain a value of our test statistic t0 =
D(x, y) = 7.96. Then, after combining samples and generating K = 1000 random
permutations and following (6) we obtain the approximation of p-value of 0.002.
Its interpretation is shown in Fig. 7, where one can find the histogram of all
sampled differences D(x∗, y∗). Black dot indicates the value t0 of the test
statistic. The barely seen grey area on
the right side of this dot corresponds
to the probability of obtaining the
distance between x∗ and y∗ not
smaller than t0. Therefore, we can
rather confidently reject the null
hypothesis and conclude that there is
no general agreement between experts’
opinions on the overall impression of
the Gamonedo cheese. Fig. 7

The permutation agreement test considered above for two samples containing
imprecise information is just one example of how fuzzy modeling can be
combined with statistical inference. Although initially, some statisticians were
skeptical about attempts to combine both theories, researchers realized that
both statistics and fuzzy set theory should not be regarded as competitive, but
that they can complement each other effectively. Moreover, expanding statistics
with fuzzy sets not only solves some issues but also raises new questions. In
particular, the distinction between the so-called ontic and epistemic sets yields
different definitions of concepts as basic as variance and, consequently, different
inferential tools. It is also worth noting that statisticians have also recognized
fuzzy sets as convenient means for constructing procedures that allow the
weakening of hypotheses or requirements that are excessively rigid.
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Magic fives Oskar SKIBSKI*
We all know that magic exists. Scientists try to explain most phenomena by* Faculty of Mathematics, Informatics and

Mechanics, University of Warsaw mathematical equations or create new definitions to pretend that what cannot
be described by equations also makes sense. However, we know very well that
they succeed in convincing only those already convinced. If the rabbit is not in
the hat, and the magician pulls it out of the hat, then there is no equation that
could describe it. One is one, and zero is zero.††Editor’s note: The (erroneous) opinions

expressed in this article are the author’s
own and may not necessarily coincide
(and they do not) with the views of
Delta.

Since we in Delta consistently pretend that magic does not exist, we will discuss
in this article an algorithm that appears to be magical, and yet is not. We can
compare it with a magic trick in which the magician simply pulls a rabbit out of
a hat, but does not show the audience beforehand that the hat is empty. For a
moment it may surprise us (“Oh! Rabbit!”). However, with careful analysis and
logical reasoning this trick can be explained: the rabbit must have been sitting
on the magician’s head throughout the performance, and while removing the hat
the magician gently hooked the rabbit’s legs and thus had something to pull out
of the hat.

Magic trick: We have a hat with n rabb. . . no no, let’s be at least a little
serious! We have a set A containing n numbers (some numbers may repeat).
One of the spectators says a number k from 1 to n. The magician in linear time
finds the k-th largest number in the set A.

How to do the trick: For some values of k this task is very simple, e.g. for
k = 1 our problem boils down to finding the smallest element in the set, which
can be easily done in linear time. However, in general (e.g., if k = ⌈n/2⌉) it is not
clear how we can do this. The case of k = ⌈n/2⌉ is, by the way, very important
for statisticians, as it concerns the so-called median, which can have even more
charm for them than the average. The natural idea is to sort all the elements
and then point to the one in the k-th position. However, the fastest sorting
algorithms run in O(n log n) time. Our problem seems much simpler than sorting
all elements – how to solve it in linear time?

When we write that the running time of
f(n) is O(g(n)) we mean that f is at
most of the order of g, that is, for large
values of n the function f(n) grows no
faster than g(n). Formally: there exist
constants c and n0 that for n ⩾ n0 it
holds f(n) ⩽ c · g(n). Thus, this is an
upper bound estimate, but usually not
the best one that can be found

We will borrow the idea for our solution from the magic trick of a woman sawn
in half, or if you prefer, from Hoare’s algorithm. Take a random element m and
divide our entire set into two non-empty sets so that the first set contains only
elements less than or equal to m (set A⩽), and the second set: greater than or
equal to m (set A⩾). In order to make the sets non-empty, we can, for example,
put all the elements less than or equal to m into the first set, and if the second
set turns out to be empty put m into it. Now, if A⩽ has at least k elements,

To some readers, this may resemble the
QuickSort algorithm. In the QuickSort
algorithm, in order to sort a set of
numbers, we divide it into elements
smaller and larger than a certain element,
and then sort both parts. It is no
coincidence that the author of the
QuickSort algorithm is also Tony Hoare.

then the element we are looking for must be in A⩽ – so we recursively search
for it in this set. On the other hand, if the set A⩽ has less than k elements, then
the element we are looking for is in the set A⩾: we must therefore recursively
find (k − |A⩽|)-th largest element there.

The idea is simple, but it may not be very efficient – if we are unlucky to always
draw the smallest or the largest element, in every step our set A will decrease
by only one element. And since each step requires linear time, the pessimistic
running time of our algorithm will be quadratic: O(n2). That is even worse than
with sorting!

However, our algorithm can be improved by changing the element based on
which we divide the set. In the card trick, to find the card chosen by a spectator,
the magician usually does not rely on fate, but carefully shuffles the deck to
control where that card is. We will do the same – we will shuffle the elements a
bit and draw one that guarantees that none of the parts are too big.

This is how the median of medians algorithm (in Polish called the magic fives
algorithm) works. Let us divide arbitrarily our set into fives of elements (the last
five can be incomplete) and for each find its median. Now, using our algorithm
recursively, we find the median of the medians: we will denote it by m. Now,
we divide our set into three parts: elements smaller than m (denoted by A<),
elements equal to m (denoted by A=) and elements larger than m (denoted
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by A>). Now if |A<| ⩾ k, we recursively look for the k-th largest element in it. If
|A<| < k, but |A<| + |A=| ⩾ k, it means that m is the k-th largest element. If, on

Solution to Problem F 1076.
If we neglect boundary effects, a uniform
electric field perpendicular to the surface
of the plates will appear between them
after charging.The charge densities will
also be uniform. Let’s assume that the
total surface area of each plate is S, then
the charge densities will be: σ1 = Q1/S
and σ2 = Q2/S. Based on Gauss’s law, we
find that inside the capacitor, each plate
is the source of an electric field with
intensity:

Ei =
σi

2ε0
.

In the above formula, ε0 represents the
vacuum permittivity. The electric field is
directed “away from the plate” if its
charge is positive and “towards the plate”
if it is negative. The resultant electric
field inside the capacitor is the sum of
the fields from both plates and is given
by:

E = E1 − E2 =
σ1 − σ2

2ε0
=

Q1 − Q2

2ε0S
,

and the value of the potential difference
is:

U = Ed = (E1 − E2)d =
(Q1 − Q2)d

2ε0S
=

=
Q1 − Q2

2C
.

the other hand, |A<| + |A=| < k, then we have to look recursively for our element
in the set A> – it is the (k − |A<| − |A=|)-th largest there. Voila!
Explanation of the trick: Okay, but how can we be sure that none of the
parts will be too big and the running time will be linear? Note that in half of
the fives, the median is less than or equal to m. In each such five, at least half
of the elements are less than or equal to m. It follows that at least 1/4 of all the
elements are less than or equal to m. This also means that no more than 3/4
of all the elements are greater than m. Similarly, no more than 3/4 of all the
elements are smaller than m. This means that no matter which case occurs, we
will recursively call our algorithm on a set reduced by at least 25%.
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Is this enough to make our algorithm run in linear time? It turns out that it is!
Let us denote the running time of our algorithm by T (n). Dividing into fives and
selecting from each the median can be done in linear time – O(n). Selecting the
median of the medians will take us T (⌈ n

5 ⌉) time. The last step is a recursive call
for any of the parts. As we have already showed, none of the parts has more
than 3/4 of all elements, so the time is T (⌈ 3n

4 ⌉). Thus, we get the following
upper bound:

T (n) ⩽ O(n) + T

(⌈
n

5

⌉)
+ T

(⌈
3n

4

⌉)
.

As it turns out this upper bound implies the running time of our algorithm is
linear! The key here is the inequality 1

5 + 3
4 = 19

20 < 1, which ensures that T (n)
does not grow too fast.
To see this, first assume that n is a power of 20 so that it divides nicely by 4
and 5. We know that the time needed to divide into fives and pick medians
can be bounded by cn for some natural c. It is easy to show by induction that
T (n) ⩽ 20cn:

T (n) ⩽ cn + T
(n

5

)
+ T

(
3n

4

)
⩽ cn + 20cn

(
1
5 + 3

4

)
= 20cn.

From the upper bound for powers of 20, we immediately get an upper bound forSolution to Problem F 1075.
Observations from directions between the
two tangents to the surface of the stars
(as shown in the diagram) are associated
with the occurrence of eclipses. These
tangents intersect at a point dividing the
segment d into segments d1 and d2,
d = d1 + d2. This corresponds to the
range of observation angles α for which
the inequality holds:

| sin α| ⩽
r1

d1
=

r2

d2
=

r1 + r2

d
.

The model considered in the task
describes the simplest case of a binary
system. In general, gravitational
interactions between the stars can lead to
deformations from spherical to ellipsoidal
shapes or even to the flow of matter
between them.

d

d1 d2

αr1

r2

other numbers: Take any n and choose k so that 20k < n ⩽ 20k+1. Since T is a
non-decreasing function, we know that T (n) ⩽ T (20k+1). But since n > 20k we
get that

T (n) ⩽ T (20k+1) ⩽ 20c · 20k+1 ⩽ 202cn.

Since there is a constant 202c such that for any n there exists T (n) ⩽ 202c · n this
means that our algorithm runs in linear time: O(n).
Finally, it remains to ask the question – why fives? It seems natural to take
an odd number (so that there are middle values), but could we take threes or
sevens? Or elevens?
It turns out that we could not take threes: we would first have to find the
median of 1/3 of all elements, and this would only reduce the problem by 1/4.
As 1/3 + 1/4 < 1, that would result in O(n log n) time. We could instead take
sevens, nines, etc: Looking for the median among 1/7 or 1/9 of all the elements
would be even faster than looking for the median of 1/5. However, we would
increase the cost of finding the medians (i.e., that enigmatic c in the above
proof) and the implementation would be more complex. So fives are used in the
algorithm, because five is the smallest odd number greater than four. And that’s
the whole magic.
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Virus means poison

147
The history of the discovery of viruses, forms of life that require a host

“Życie na żywo” (Polish for “Live life”)
is a single author column series in Delta
that concerns life sciences.

cell (bacterial, animal, or plant) to survive, is not too distant. It was with
surprise that Louis Pasteur, in the late 19th century, observed the virus
causing rabies, realizing that an infectious agent could be isolated by
filtering tissue extracts through porcelain filters that retained bacteria.
This was the first indication that the rabies virus must be smaller than
bacteria. With the invention of electron microscopes, we were able to see
various viruses and learn about their shapes. This device turned out also
incredibly useful in studying the fundamental processes of large molecules
necessary for life, such as proteins, nucleic acids, and their structural and
metabolic interrelationships. The word “virus” is widely known, although
detailed knowledge about different viruses is accessible only to specialists.
From time to time we come across news in newspapers about viruses and
our relationship with them (pandemics!), and then it is useful to listen to
what the virologists have to say.
At the end of May, registration for non-compulsory and free vaccinations

HPV type 16 viral capsid protein.
Attribution: Opabinia regalis, CC BY-SA
4.0 via Wikimedia Commons

against human papillomaviruses (HPV) for 12 and 13-year-old children
has begun in Poland. This vaccine is an exceptional medical achievement.
HPV viruses cause morphological changes in the squamous epithelial cells of
the cervix, which can eventually transform into squamous cell carcinoma.
The discovery that cancer may be virus-induced led to the successful
development of the vaccine. It was designed 17 years ago. Clinical safety
studies were conducted under the supervision of the European Medicines
Agency. There are also data on the effectiveness of the vaccine: according
to a study of more than 2,000 women from Scandinavian countries, the
incidence of cervical cancer decreased by 90% compared to the number of
cases in the period when there were no vaccinations. During the 8 years
of the study, there was not a single new case of this disease among the
participants, which proves its high effectiveness. Universal vaccination was
first introduced in Australia, in 2007, followed by the United Kingdom in
2008, and by 2019, almost all European Union countries had implemented
such free vaccinations for both girls and boys. These vaccinations are now
used in 125 countries worldwide (data as of May 2023).
There are over 150 types of HPV known, including low-risk types that
cause benign genital warts and high-risk types responsible for precancerous
changes, cervical cancer, and other malignancies. HPV infection usually
occurs through sexual contact, most commonly in the early stages of sexual
activity. Throughout their lives, 80% of sexually active women and men have
been or will be infected with HPV. HPV infections can also lead to anal,
vaginal, vulvar, penile, oral, and head and neck cancers. The three most
common highly oncogenic types of HPV are HPV-16, HPV-18, and HPV-45,
which are believed to be responsible for 80-90% of the aforementioned
cancers. For every one million women infected with oncogenic HPV, 8000
develop cancer, and the mortality rate for cervical cancer is 50%.
The vaccines constructed according to the same principle have the viral
protein L1 as the antigen. Vaccines targeting different types of viruses
consist of different (though chemically similar) L1 proteins specific to each
virus type. These proteins form virus-like shells that do not contain any
genetic material and do not cause infections. They are produced using
genetic engineering, not from propagation of real viruses.
HPV vaccines are the first medicinal products with primary purpose to
prevent cancer. For me, it’s a revelation!

Solution to Problem M 1751.

CB XY

O1

A
O2

O

Let O1 and O2 be the centers of the
circumcircles Ω1 and Ω2 of triangles
AOB and AOC respectively. Note that
O1 lies on the line OX, hence we have:

?AO1X = 2?ABO = π − ?AOB =
= π − 2?ACB = ?AY X,

thus O1 lies on the circumcircle of the
triangle AXY . Similarly, we can prove
that O2 lies on that circle. Magdalena FIKUS (magda.fikus@gmail.com)
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All models are wrong, so which ones are useful?
Przemysław BIECEK** MI2.AI, University of Warsaw and

Warsaw University of Technology
George Box’s quote “All models are wrong, some are useful,” is a well-known

G. Box, “Science and statistics”, Journal
of the American Statistical Association
(1976)

phrase among statisticians. It acknowledges that it is impossible to create a
perfectly accurate model to describe reality but that imperfect models can still
be useful in real-world applications. Over the decades, various data-driven models
have been developed using this philosophy and formulated to answer a variety of
questions. Does the analyzed therapy produce positive medical outcomes? Does
investment in education translate into student performance? These are just two
examples of research questions that can be verified with data-driven models. Such
approaches are the foundation of all empirical sciences.

Despite acknowledging the validity of Box’s statement, an important question
remains unanswered: how do we determine which models are useful? The answer
is some but apparently not all of the models. Choosing the appropriate model or
models is a critical decision. The conventional approach is to select some model
quality criterion, usually based on how well the model fits the analyzed data, and
then choose the model that best satisfies this criterion. There are several model
quality criteria used by statisticians, including RMSE, R2, AIC, BIC (we won’t
give their proper definitions here as they are of no importance to this article). In
the machine learning community, criteria based on predictive performance on a
new independent data are more common. However, the general procedure remains
unaltered: start with a group of candidate models, select the best one according
to a specific criterion and consider it the most accurate description of reality.
From there we begin our inference.

Such approaches sometimes lead to surprises and interesting paradoxes. One
of them is Anscombe’s quartet, introduced (precisely!) 50 years ago. AnscombeF. Anscombe, “Graphs in Statistical

Analysis”, American Statistician (1973) created four artificial sets of data, each consisting of 11 pairs of real numbers
(like height and weight of eleven newborns). All those datasets have the same
best-fitted linear model (in the sense of R2) with the same value of R2. Yet
each set of data tells a completely different story. To understand the nature of
the relationship between variables, visualization of the data is essential, as in
Figure 1.
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Fig. 1. Anscombe’s quartet. For each dataset the model y = x/2 + 3 is the best linear fit and has similar fit to the data with the coefficient of
determination R2 = 0.66

As a consequence, a linear model that fits the data well is not enough to infer the
relationship between variables accurately. Anscombe’s solution to this paradox
is to visualize the data, even with basic methods such as a scatterplot. Visual
analysis can complement statistical inference in such cases and many well-known
statisticians have proposed new methods of data visualization, which today are
referred to as Exploratory Data Analysis tools.J. Tukey, “Exploratory Data Analysis”,

Pearson (1977)
Anscombe demonstrated that different data sets can have the same model fit
equally well but present entirely different stories. However, can the opposite be
true? Can one dataset have several models with different stories that produce
the same fit? Surprisingly the answer is positive. It was pointed out in 2001 by
Leo Breiman in his influential paper “The Two Cultures”. This quality is now

L. Breiman, “Statistical Modeling: The
Two Cultures”, Statistical Science (2001)
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known as the “Rashomon perspectives” or “the multiplicity of good models”
and it continues to exist in the foundations of statistical modeling in today’s
world, which is increasingly reliant on such models. The name “Rashomon” refers
to a 1950 movie by Akira Kurosawa, in which an event is described from the
perspective of four witnesses, each offering a different account of what had
happened. Their stories vary so much that it is impossible to tell what is the
truth. Breiman used this term to describe a hypothetical scenario in which several
models have an equally good fit to the data, but they offer different explanations
for the data. Such a situation would call into question any inference based on
the “single best” data-driven model. For instance, what should one do facing two
models that claim conflicting results about the effectiveness of a medical therapy?
Which of these models should be trusted if they both have an equally good fit to
the data?
In order to illustrate the multiplicity of good models problem, Breiman used
several linear models with the same fit to the data (hardly different from the best
possible linear fit). At the same time those model lead to different conclusions
regarding the dependence between variables (e.g. is the increase of one variable
followed by the increase or the decrease of another variable?) To make this
phenomena even more striking, in our recent paper we introduced the Rashomon’s
quartet. The paper presents a regression tree, a random forest, a neural network,P. Biecek, H. Baniecki, M. Krzyziński,

and D. Cook, “Performance is not enough:
a story of the Rashomon’s quartet” arxiv
(2023)

and a linear model (I will not delve into the details of these models here, for this
article they are not important). All these models were fitted to the same data,
resulting in the same predictive performance, but it turns out that each model is
describing an entirely different story.
. . . but wait! How do we know what stories are depicted by such complex models
as a neural network or a random forest with hundreds of trees? Visualization
techniques for predictive models developed under the name eXplainable Artificial
Intelligence (XAI) or Explanatory Model Analysis (EMA) come to our aid. One
of them is Partial Dependence (PD), a technique proposed by Jerome Friedman
in his famous work on the boosting method. PD is a model agnostic method,J. Friedman, “Greedy Function

Approximation: A Gradient Boosting
Machine”, Annals of Statistics (2000) meaning that it can be used to analyze any predictive model regardless of its

complexity or structure. Due to this universality, this method has quickly found
many applications.
Let us introduce the intuition behind the Partial Dependence profile. The value
of PD of any given variable S and its potential value t is equal to an average
prediction of the model for the available data in which the value of the variable S
is “artificially” set to t.See also P. Biecek, T. Burzykowski

“Explanatory Model Analysis” CRC Press
(2021) or https://ema.drwhy.ai/ In order to describe it more formally let us assume that we have N observations

of p input variables (e.g. for N newborns we observe weight, height, eye color. . . ),
where the i-th observation is (xi,1,xi,2, . . . ,xi,p). These variables are used to predict
something (this something is usually called the target variable) and in order to do
so we apply the function f(x1, . . . , xp), which is our model. The Partial Dependence
of the s-th variable is the function defined by the formula

PDs(t) = 1
N

N∑
i=1

f(xi,1, ..., xi,s−1, t, xi,s+1, ..., xi,p).

In essence, the PD shows how the predicted value of the target variable changes
as the value of the predictor variable(s) of interest varies, while holding all other
predictor variables constant at their observed values in the dataset.
The PD response profiles of each model in the Rashomon quartet are displayed
in Figure 2, revealing distinct relationships between the variables, particularly
for variables X2 and X3. For example, X2 is insignificant in the first model but
has positive effect in the other models. In contrast, X3 is insignificant in the first
model, has a negative effect in the second model and a positive effect in the third
and fourth model. However, when all models have an equivalent fit to the data, it
is challenging to determine which description is accurate.
Which model should we trust? If we don’t know, why should we trust any of
them? Since, due to random fluctuations, each of these model can be considered
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Regression tree
R2: 0.7287
RMSE: 0.3537

Linear model
R2: 0.7290
RMSE: 0.3535

Neural network
R2: 0.7290
RMSE: 0.3535

Random forest
R2: 0.7287
RMSE: 0.3537

Fig. 2. Rashomon’s quartet. Each row
stands for a different model while
columns stand for consecutive input
variables. Panels show Partial
Dependence profiles. These four models
were fitted to a single dataset. The R2

and RMSE fit coefficients presented show
that all these models are equally well
suited to the data analyzed.

as the best one, analyzing only the single best model, and disregarding the
slightly inferior ones, may be a bad strategy.

PD profiles say a lot about the models, but they are not yet the ultimate solution
to the model visualisation problem. Despite their universality, they have some
limitations or shortcomings, e.g. correlations between variables or interactions can
distort the picture presented by these profiles. Variable-by-variable analysis will
be difficult if the model uses hundreds or thousands of variables.

Characterization of a set of the best models is still an unresolved research
problem, and different research groups are struggling with it. It is difficult butC. Rudin, Ch. Chen, Z. Chen, H. Huang,

L. Semenova, Ch. Zhong “Interpretable
Machine Learning: Fundamental
Principles and 10 Grand Challenges”
arxiv (2021)

essential. To comprehend the world, we cannot depend solely on a single model’s
perspective, even if it has the best performance in relevant criteria. We must
combine sets of models to differentiate between hypotheses supported by data
and hypotheses that may result from the chosen predictive models.

The task of recognizing situations in which we can deal with the Rashomon
perspective is yet to be solved. In the meantime, we can resort to thorough
verification using a range of model visualization techniques. Anscombe’s quartet
has shown that data visualization techniques can be very useful for reasoning
about nature of relations between variables. Similarly, Rashomon’s quartet shows
that model visualization techniques can be equally useful.

If you wish to explore the topic of model visualisation and comparison further,
you may refer to resources such as the statistical comic book “The Hitchhiker’s
Guide to Responsible Machine Learning” available at https://betaandbit.
github.io/RML/. Using the SARS-COV-2 mortality prediction as an example,
it discusses the process of training predictive models as well as methods for
exploring these models, including the best-known ones that is Partial Dependence,
Shapley Values, and Ceteris Paribus. The examples presented above are for
synthetic data. Similar challenges can be encountered when analyzing real-world
problems as shown in the RML comic.

At the end of the day, we know that all models are wrong and we don’t know
which ones are useful. However, we can look at many good models at once.
Looking at the world through the perspective of multiple models is essential to
separate relationships truly supported by the data from relationships that are
artifacts of the chosen modeling technique.
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A boy or a girl?
Łukasz RAJKOWSKI** Faculty of Mathematics, Informatics and

Mechanics, University of Warsaw
Imagine, Dear Reader, that you are embarking on a long train journey. Just as you
have comfortably settled in your seat and started reading your favourite magazine,
your are interrupted by a cheeky exclamation: “Hey, what a coincidence! Long time
no see, huh?” You raise your head, and your eyes meet a friendly face that, with a
little effort of memory, you recognize as an old friend from elementary school.

“Yeah, long time indeed. . . ” you reply, reluctantly closing your Delta magazine.
“How have you been?” your friend courteously inquires.

Well, there comes a moment when you have to summarize several years of life in
one sentence, so you respond, “Good! And how about you?” Your friend opens his
mouth, and you already know that the question was a mistake. He really wants
to summarize the past few years of his life, certainly not in one sentence. After an
hour of narrating his school and professional adventures, the conversation shifts to
family matters. At some point, you limit yourself to nodding politely, smiling, and
the infallible “Oh boy!” while in your mind you are actually solving the Delta’s
Problem Corner [in this issue on page 19, ed. note].

At some point, you realize that your friend has started talking about the
difficulties of finding childcare for his child. The problem is that you missed the
moment when he mentioned having a child at all.

Hmm, you think to yourself, I didn’t hear whether it’s a boy or a girl. It’s better to
refer to them in a gender-neutral way; otherwise, I have about a 50% chance of an
awkward mistake.

As the conversation continues, it turns out that your friend was seeking childcareA similar issue is addressed in the song
Nie mam pojęcia by Łona and Webber. not for one child but for two! Furthermore, you caught the sentence in his

monologue, “I went for a walk with my son,” which establishes the gender of one of
the children. The gender of the second child remains a mystery to you.

Ah, I once read something about this on the internet! you think. At first glance,
it would seem that the chance of the second child also being a boy is 50%. But we
can look at it differently. If I forget the information I already have, the chance
of my friend’s older child being a boy is 50%, and similarly, the chance of the
younger one being a boy is also 50%. Therefore, the chance of having two boys is
50% × 50% = 25%. Likewise, the chance of having two girls is 25%. There are two
remaining possibilities, each with a probability of 25%: older boy, younger girl, and
vice versa. I already know that my friend has a son, so out of these four equally
likely situations, I can restrict attention to three (by excluding two daughters). And
out of those three, only one corresponds to the situation of my friend having two
sons, so the chance of that is 1/3. With my back against the wall, I should bet on a
daughter!

To ensure the correctness of your reasoning, you discreetly took out a piece of
paper and a pencil and sketched a convincing 2 × 2 table representing different
combinations of the gender of the older and younger child (reproduced in Figure 1).
Yes, it clearly shows that everything is correc. . .

♂

♀

♂ ♀

Fig. 1. The rows correspond to the gender
of the older child, and the columns
correspond to the gender of the younger
child. The hatched area represents 1/3 of
the coloured region

(voiceover) No! Nothing is correct! As a matter of fact you are dealing with a
situation where a randomly encountered person (the information that it is your
acquaintance is irrelevant) happens to have two children and starts telling you
about one of them, who turns out to be a boy. It is reasonable to assume that your
acquaintance randomly selected one of his children (each with equal probability). If
he is the father of two boys, he will definitely talk about a boy. If he is the father
of a boy and a girl, he has a 50% chance of talking about a boy. In other words,
out of all fathers of two children of both genders, only half of them would start
talking to you about their son. Thus, your table should correspond to the one
in Figure 2. In the end, from your perspective, the chance of your acquaintance
having two sons remains 50%!
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However, it would be a different scenario if you specifically asked your
acquaintance, “Dear friend, please start telling me about one of your sons if you
have at least one.” Assuming that your acquaintance would indeed begin a story
(instead of quickly changing seats), the reasoning and table presented earlier in
Figure 1 are correct, and the chance of him having two sons would indeed be 1⁄3.

For the purpose of the rest of the story, let’s assume that was the case.

The monologue of your acquaintance continues. Once again, you concentrate

♂

♀

♂ ♀

talks about
a boy

ta
lk

s
ab

ou
t

a
bo

y

Fig. 2. The hatched area represents 1/2 of
the coloured region

on something else. At some point, a piece of information breaks through your
consciousness: the aforementioned son was born on a Monday, and since then,
Monday has been your acquaintance’s favorite day of the week (lucky him). This
news prompts you to engage in another mathematical reflection.

Should the information I just obtained change my estimation of the chances that
my acquaintance has two sons? It might seem that it shouldn’t in any case since
the day of the week on which his mentioned son was born cannot influence the
gender of the other child in any way. However, on the other hand, this knowledge
requires me to modify the previously sketched table. Now, for each child, the older
and the younger, I should record not only their gender but also the day of the week
on which they were born. Assuming that each day of the week is an equally likely
birthday, this gives me 14 equally likely configurations of gender and day of the
week for each child, resulting in a total of 196 configurations for both children
(142 = 196). This time, 27 of them correspond to the occurrence of a boy born on
Monday, and out of those, in 13 cases, the other child is also a boy. Therefore, my
estimation of the probability that my acquaintance has two boys should increase
from 1/3 to 13/27.

Because the situation intrigued you, you redrew your table, obtaining something
similar to Figure 3 in the margin. And although you know from experience that
tables are not to be debated, the conclusions you reached still bothered you.

♂

♀

♂ ♀

1

1

1 1

2

2

2 2

3

3

3 3

4

4

4 4

5

5

5 5

6

6

6 6

7

7

7 7

Fig. 3. The numbers correspond to the
day of the week on which each child was
born. The hatched area represents 13/27 of
the coloured region.

(voiceover) And rightly so, as such reasoning replicates the mistake described
earlier. This time, you should take into account the fact that if your acquaintance
has two boys, with exactly one of them being born on Monday, he started talking
about that specific child, but he could have talked about “the other one”, which
effectively reduces the probability of such a configuration from your perspective.
Considering this in the reasoning leads us back to the answer of 1/3 (as before),
as can be seen by analyzing Figure 4. Again, if you were to ask whether your
acquaintance has a son born on Monday, an affirmative answer would allow you to
change the estimation of the chances of having two boys to 13/27, in line with the
reasoning presented earlier (while a negative answer would decrease the estimation
to exactly 30%, as we encourage you to verify independently).
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Fig. 4. The hatched area represents 1/3 of
the coloured region After this information, the topic of children came to an end. Soon, after listening

to a few more gripping stories from your acquaintance’s life, the train arrived at
its destination – it did not surprise you when it turned out that both of you were
getting off at the same station. On the platform, his wife was already waiting with
a tousled rascal.

Question 1. How do you now assess the chances that your acquaintance has two
sons?

As you were about to say your goodbyes, your old preschool friend, whom you
haven’t seen in ages, appeared behind your school acquaintance! Before she could
say anything, you shouted to her:

“Hey there, long time no see! Do you happen to have two children, at least one of
whom is a boy born on Monday?”

Your friend was taken aback for a moment, then smiled cunningly and replied:

“Yes, I have two children, and none of them was born on Monday.”

Question 2. What are the chances that your preschool friend has two sons?

(Answers to the above questions can be found on page 14.)
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News of Physics (and beyond)

New answers, new questions
Eleven years ago, in July, at the press conference at CERN, the discovery of
the Higgs boson was announced. The blessing of middle age allows me to be
both old enough to understand the significance of this discovery at the time,
and young enough to remember the emotions that went with it. However, with
important discoveries of elementary particles, it is a bit like with CSI movies
– the audience is shown a (sometimes spectacular) murder, then specialists
enter the action, documenting the event and trying to better understand what
actually happened, beyond the reach of the cameras and the script.

This is exactly what the Higgs boson has been subjected to for over a decade.
Answers to the questions from
page 13:
Question 1. In this situation, we should
take into account that if the acquaintance
had a son and a daughter, the mother
would have only a 50% chance of bringing
the son. Therefore, the table from Figure
4 in the article should be modified by
narrowing the coloured, plain rectangles
twice. This leads to an answer of 50%.
Question 2. The interpretation of this
situation seems somewhat subjective, but
in the author’s opinion, it should be
assumed that the friend did not answer
our question (“Is at least one child a boy
born on Monday?”), but two separate
questions: “Do you have at least one
son?” and “Do you have at least one child
born on Monday?”. If we had actually
asked her those questions (in a sense we
did when we chose “Monday”), we would
estimate the chances of having two boys
as 1⁄3 (it is helpful to visualize this
situation using Figure 3 from the article).

Individual results, sometimes documented in these pages, confirmed with
increasing accuracy that the experimentally determined properties of this
particle are consistent with the predictions of the Standard Model of elementary
particles. And theoretical physicists have been patiently waiting for some
discrepancies to emerge that might indicate that the Standard Model needed
to be extended.

Studying the Higgs boson is not an easy task. It is an uncharged particle and
interacts only weakly, which means that the probability of its production is
minuscule. It takes really high energies and large numbers of colliding particles
to collect any statistically significant sample. Even in a collider as large as the
LHC, only one such particle is produced every two seconds of the machine’s
operation. It is therefore not surprising that it takes years to determine the
characteristics of some rare processes involving the Higgs boson.

An example of such a rare process is the decay of the Higgs boson into the
Z boson, a massive, neutral particle that carries the weak force, and a photon
known from electromagnetic interactions. The Standard Model predicts that in
only 0.15% cases the Higgs boson decays this way. Even worse, the appearance
of the Z boson also has to be detected somehow. It is not easy, because it is also
an unstable particle, too short-lived to be directly observed. It is identified by
its decay products - an electron-positron pair or a muon-antimuon pair, which
occurs in 6.6% of decays. This means that assuming 100% efficiency of the
detectors - and this is a senselessly optimistic assumption! – only one in ten
thousand decaying Higgs bosons will produce a signal of interest that we could
observe.

The importance of the decay of the Higgs boson into a Z boson and a photon
is that, according to the Standard Model, it does not occur directly, but is – in
a certain way –assisted by other particles present in nature, perhaps also those
that have not yet been detected. Thus, if the measured probability of this decay
were significantly different from the predictions of the Standard Model, this
would be an argument for the existence of such new particles, and their masses
are close to the energy scale achieved by colliding particles at the LHC.

To experimentally determine the probability in question, teams of physicists atThe ATLAS and CMS Collaborations.
2023. Evidence for the Higgs boson decay
to a Z boson and a photon at the LHC.
ATLAS-CONF-2023-025

the ATLAS and CMS detectors had to join forces. Using artificial intelligence
methods to analyze the data, the researchers found it to be 0.34% with a
measurement uncertainty of 0.11%. On the one hand, this may cause some
concern, because the determined value is 2.2 times higher than the predictions,
but on the other hand, the measurement uncertainties are still large enough
that compliance with the Standard Model is not yet ruled out, although the
probability of random statistical fluctuation of such an order is not very large
and amounts to only 6%. We will probably have to wait a few more years to
solve the riddle of what has actually been measured...

Krzysztof TURZYŃSKI
Faculty of Physics, University of Warsaw
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Searching for order
Andrzej DĄBROWSKI** Faculty of Mathematics and Computer

Science, University of Wrocław
In 1950, one of the autumn meetings of the Seminar on Applied Mathematics

The full name is Seminar on Applied
Mathematics, General Section of the
Department of Applied Mathematics of
the State Mathematical Institute [1].

in Wrocław was dedicated to the Ngandong skulls. Anthropologists expected

The Ngandong skulls are a group of
fossilized human skulls discovered in 1931
in the Solo River valley on the island of
Java, Indonesia. These skulls are dated to
approximately 100-200 thousands years
ago and are considered to be remains of
hominids of the species Homo erectus.

mathematicians to order these skulls chronologically based on Czekanowski
tables graciously sent to us by Prof. T. Henzel (quotation from the chronicle of

Jan Czekanowski (1882–1965) was an
anthropologist and ethnographer. He
studied anthropology, anatomy,
ethnography, and mathematics at the
University of Zurich. He participated in
the Seminar in Wrocław (four times
according to the Seminar’s chronicle).

the Seminar).

Order, understood as linear, is expected in many fields. Various rankings
are created (for schools, universities, political support). It is hard to imagine
sports events without rankings based on measured time, distance or points
(pentathlon). Indexes are constructed to compare objects that are often
difficult to compare. In economics, stock market states are assessed by stock
market indices (e.g. Dow Jones, WIG), and the price level is assessed by the
inflation index. The health status of a population is assessed by the average life
expectancy or infant mortality rate. Comparison methods based on rankings and
indices involve assigning a number to objects. And as we know, numbers can
easily be ordered.

It is more difficult when an object can be described by a set of many numbers,
and even more challenging when assignings numbers to it is hard. Such a
problem arises when ordering shells with various patterns found on an ancient
landfill (this is the so-called seriation problem in archaeology). Anthropologists
turned to mathematicians with a similar problem, ordering the Ngandong skulls.

Czekanowski tables, which were available to Professor Steinhaus’s team
(Kazimierz Florek, Józef Łukaszewicz, Julian Perkal, and Stefan Zubrzycki),
contained information on the degree of differentiation of each pair of skulls. This
degree was expressed by the Euclidean distance in a seven-dimensional space of
parameters representing the lengths of characteristic segments on the skull.

In general, such a table can be treated as a discrepancy function. This is any
function d(x, y) defined on pairs of elements from a given set X, which satisfies
the conditions:

d(x, y) ⩾ 0, d(x, y) = d(y, x) and d(x, y) = 0 ⇔ x = y,

A special case of a discrepancy function is a distance functiona metric. A metric
is a discrepancy function that also satisfies the triangle inequality: d(x, z) ⩽
d(x, y) + d(y, z) for all x, y, z.

Example 1. Vases. Four vases with decorations were discovered. Each vase is•□

◦
• •□

◦∗
△
◦

A B C D

Fig. 1

treated as a set of ornaments painted on it. The Kulczyński discrepancy function
can be used as the discrepancy function, defined for two sets of ornaments R
and S by the formula

Stanisław Kulczyński (1895-1975),
zoologist, arachnologist, mountaineer.
Rector of universities in Lviv and
Wrocław.

d (R, S) = 1 − 1
2

(
|R ∩ S|

|R|
+ |R ∩ S|

|S|

)
.

It can be easily verified that such a function is indeed a discrepancy function.
It is also quite intuitive, since 1

2
( |R∩S|

|R| + |R∩S|
|S|

)
is the arithmetic mean of the

fractions of common elements of R and S, contained in the set R and contained
in the set S.

The resulting discrepancy matrix is presented in the margin. Note that the

A B C D

A 0 1⁄3 1⁄8 7⁄12

B 1⁄3 0 3⁄8 1

C 1⁄8 3⁄8 0 5⁄8

D 7⁄12 1 5⁄8 0

Kulczyński discrepancy matrix.

Kulczynski function is not a metric, since d(B, D) = 1 > 11
12 = d(B, A) + d(A, D).

Discrepancy function and linear order. How to introduce an order
among objects for which we have a discrepancy matrix? Let us first consider
a particular case. Assume that the objects are points distributed on the real line,
and we take the discrepancy function to be the distance between them. Can we
reconstruct the ordering of the points on the line from the discrepancy matrix
alone? Yes, we can – we just need to choose an ordering that minimizes the sum
of distances between consecutive points.
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It will be convenient for us to represent objects O1, O2, . . . , On with
discrepancies dij = d (Oi, Oj) by an undirected complete graph G with n vertices
O1, O2, . . . , On, whose edge OiOj has weight dij . An example of such graph
is given in Fig. 2. We define the length of the path Oi1Oi2 . . . Oin

as the sum
di1i2 + di2i3 + . . . + di(n−1)in

.

A

B

C

D

14

15 9

8
3

24

Fig. 2. Graph with Kulczyński
discrepancies (multiplied by 24) and a
path ADBC of length 47.

Previous observations suggest that an order of objects O1, . . . , On may be
determined by the path in graph G of minimum length that passes through
all its vertices (an optimal path).
Example 2. Five capitals. The table below shows the road distances (in

• •□

◦∗
•□

◦
△
◦

B C A D

Fig. 3. Optimal path BCAD in a graph
with weights.

kilometers) between Amsterdam, Berlin, Paris, Rome, and Warsaw.
A B P R W

A 0 650 510 1650 1140

B 650 0 1040 1460 570

P 510 1040 0 1430 1550

R 1650 1460 1430 0 1730

W 1140 570 1550 1730 0

Out of 60 possible paths, the shortest one goes from Warsaw through Berlin,
Amsterdam, Paris, and all the way to Rome, and has the length of 3160 km.
Dendrites. Linear ordering is often insufficient and even inadequate. Let us
quote here Julian Perkal’s observation: As I noticed, linear ordering is often
unnatural in many cases, for example, a genealogical line often branches out. [2]
The structure that allows a nearly linear ordering of the vertices of a graph
is a dendrite, more commonly known as a tree – for historical reasons, we
will use the former term here. A dendrite is a graph without cycles, which is
also connected. These two conditions together mean that any two vertices are
connected by a uniquely determined path (Fig. 4). Any path itself is also a
special case of a dendrite.

Fig. 4

A

C D

B

3 14

8

Fig. 5. Optimal dendrite for the problem
of 4 weights. Its length (25) is smaller
than the length of the optimal path
BCAD (26).

The length of a dendrite is defined as the sum of the weights of its edges.
Inspired by previous observations, we assume that a dendrite of minimum length
(an optimal dendrite) reproduces the order of n vertices of the graph in the best
way (Fig. 5).
Wrocław taxonomy. In the example with weights, it was easy to identify
the optimal dendrite. As the number of vertices in the graph increases, the
question arises about computing it in an algorithmic way. In computer science,
this problem is classical and known as the minimum spanning tree problem.
According to [3], the earliest published solution to this problem (1926) comes
from the Czech mathematician Otakar Borůvka, who was dealing with it in the
context of developing an optimal electrical network in Moravia. The classical
algorithms, known to participants of Olympiads in informatics, are Kruskal’s
and Prim’s algorithms that were published in 1956 and 1957, respectively.
It seems that mathematicians from Wrocław were the first to address this
problem in the context of methods of ordering and classifying (i.e. taxonomy)
in anthropology, biology, or linguistics. Their method, published in 1951 ([4]),
is basically Borůvka’s algorithm (of which they were unaware) and is called the
Wrocław taxonomy in Polish statistical literature.
As part of this work, the first step towards the general construction of an
optimal dendrite was taken in 1949 by Kazimierz Florek. He noted that any
optimal dendrite should contain segments connecting the nearest objects – that
is, those connecting an object with its nearest neighbor. Such segments are
called connections of order I.
In the example with the vases, this procedure solves the problem: connections
of order I form a dendrite. However, this is not always the case. Connections
of order I for 5 capitals form a disconnected subgraph, shown in the margin.
Notice, however, that in the graph of connections of order I, cycles cannot occur
– such a graph is called a forest, and it naturally breaks down into dendrites.

A

B W

P R

570

510 1430

Fig. 6
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In 1950, the creators of taxonomy proposed an optimal dendrite construction,
which is an iterative version of Florek’s idea:

Method W
1. Build connections of order I for a given graph G. If they form a dendrite,
the construction is finished. If not, proceed to step 2.

2. Create a new graph G1. The vertices of graph G1 are sub-dendrites
formed from the connections of order I of graph G. The discrepancy
between sub-dendrites A and B is the discrepancy of the nearest neighbors:
d(A, B) := min{d(P, Q) : P ∈ A, Q ∈ B}. Create connections of order I for
graph G1 (these are connections of order II for G). If they form a dendrite,
the construction is finished. If not, repeat step 2 for graph G1.

3. In this way, we create consecutive graphs G1, G2, G3, . . . and for each of
them, connections of the next order. These iterations must end because the
number of vertices in subsequent graphs Gi decreases.

4. The construction of the final dendrite ends by connecting dendrites
of successive orders with edges between objects that realize the nearest
neighbor discrepancy.

Let us see how method W works for the example of 5 capitals. Connections of
order I form sub-dendrites O1 = {A, P, R} and O2 = {B, W}. Graph G1 has
vertices O1 and O2. The minimum distance from B to the set of points {A, P, R}
is 650, and the minimum distance from W to {A, P, R} is 1140 km. Therefore,
the discrepancy of the nearest neighbor between O1 and O2 is equal to 650 km,
which is the distance between Berlin and Amsterdam. G1 with the connection of
order II between these capitals is already a dendrite. This ends the construction,
creating the final optimal dendrite, which turned out to be the path WBAPR.
Proof of optimality of Method W. Without loss of generality, we can

B

D

A
C

d

D2D1

Dr W

U V

Fig. 7
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assume that all nonzero discrepancies in the graph G are different. If necessary,
we can replace the discrepancies dij with d

′

ij = dij + εij (for i < j), where
d

′

ji = d
′

ij and εij > 0 are any chosen distinct numbers smaller than min dij . After
the construction is finished, we need to return to the discrepancies dij .
Let W be the dendrite constructed using method W. Suppose that W is
not an optimal dendrite, so it is different from some optimal dendrite M .
Therefore, there is an edge in W that does not appear in M – let it connect
vertices A and B.
Assume that the edge AB has weight a and order k in the dendrite W .
It connects dendrites U and V of order k − 1 with vertex sets U ′ and
V ′, respectively. The other dendrites of rank k − 1, which we denote by
D1, D2, . . . , Dr, have vertex sets D′

1, D′
2, . . . , D′

r. According to the construction of
W , one of the following two cases holds:
1. a is smaller than each discrepancy between U and D1, . . . , Dr,
2. a is smaller than each discrepancy between V and D1, . . . , Dr.
Without loss of generality, assume that case 1 holds.
In dendrite M , vertices A and B are connected by a path that does not contain
the edge AB, and it must contain an edge CD such that C belongs to U ′ and
D does not. Assume that D belongs to D′

1. The weight of the edge CD is
not smaller than the distance d between dendrites U and D1 in dendrite W .
Moreover, a < d because case 1 holds. Therefore, we can create a new dendrite M ′

by replacing the edge CD in M with the edge AB. The length of M ′ is smaller
than the length of M . This contradicts the assumption that M is an optimal
dendrite.
Grouping. A set of objects might be non-homogenous: shells found in an
ancient landfill or skulls found in a surveyed area may come from several distinct
periods. How to divide the data so that dendrites, corresponding to the division,
indicate significant differences in these groups?
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A family of k dendrites D1, D2, . . . , Dk with sets of vertices Z1, Z2, ..., Zk is a
partition of a given complete graph G with vertices Z when

Z = Z1 ∪ Z2 ∪ . . . ∪ Zk and Zi ∩ Zj = ∅ for i ̸= j

The length of the partition is the sum of the lengths l(Di) of the component
dendrites. The partition is optimal if the length of the partition is minimal.
From this definition, it immediately follows that the components of an optimal
partition must be optimal, so we can assume Di = W (Zi).

Let’s go back to the example of the four vases. They can be divided into two
groups in seven ways:

Z1 {A, B} {A, C} {A, D} {A, B, C} {A, B, D} {A, C, D} {B, C, D}

Z2 {C, D} {B, D} {B, C} {D} {C} {B} {A}

W (Z1) A–B A–C A–D B–A–C B–A–D C–A–D B–C–D

W (Z2) C–D B–D B–C D C B A

l(W (Z1)) + l(W (Z2)) 23 27 23 11 22 17 24

The optimal partition D1 = C–A–B , D2 = D is a subgraph of the dendrite
obtained by the W method (Fig. 5). It turns out that this is always the case.

Theorem. If {W (Z1), W (Z2), ..., W (Zk)} is an optimal partition of the graph G
with vertices Z, then

W (Z1) ∪ W (Z2) ∪ . . . ∪ W (Zk) ⊂ W (Z).
Proof. As before, without loss of generality, we assume that all non-zero
discrepancies are distinct.

Suppose that there exists an edge AB in W (Z1) ∪ W (Z2) ∪ . . . ∪ W (Zk) that
does not belong to W (Z). There exists a path sAB in W (Z) connecting these
vertices.

From the disjointness of Zi, it follows that there exists an r such that the edge
AB belongs to W (Zr). The elements of Zr can be divided into subsets U and
V as follows: U consists of the vertex A and all vertices in Zr connected to A
by a path in the dendrite W (Zr) that does not contain the edge AB; V consists
of the vertex B and all vertices in Zr connected to B by a path in the dendrite
W (Zr) that does not contain the edge AB.

The path sAB must contain an edge CD such that C ∈ U and D /∈ U . Let
d(A, B) = x and d(C, D) = y. The inequality y < x holds; otherwise, replacing
CD with AB in the dendrite W (Z) would decrease its length, which would be a
contradiction.

There are two cases: D ∈ V and D ∈ Zs for s ̸= r.

1. D ∈ V (Fig. 9). In this case, replacing AB with CD in W (Zr) yields a dendrite

W (Z1) W (Z2) W (Z3)

A
B

D

C

Fig. 9

W (Z1) W (Z2) W (Z3)

A
B D

C
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Stary Groń
Góra Bukowa

Kamienny

Szyndzielnia
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Potok Jawornik
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Kubalonka
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Rys. 11

that is not optimal, which is a contradiction.

2. D ∈ Zs for s ≠ r (Fig. 10). We replace the dendrite W (Zr) with the dendrite
W (U) ∪ CD ∪ W (Zs) of length l(W (U)) + y + l(W (Zs)), and the dendrite W (Zs)
with W (V ) of length l(W (V )). The sum of the lengths of all k dendrites after
the change is smaller than the sum of their lengths before the change, which
contradicts the assumption that the partition is optimal.

From the above theorem, we obtain a useful result in the context of finding an
optimal grouping:

Corollary. The optimal partition of a graph G into k subdendrites involves
removing from the dendrite W (Z) the k − 1 edges with the largest discrepancies.

A bit about applications. The Seminar on Applied Mathematics actively
promoted the idea of taxonomy, applying it in various fields. In Steinhaus’s
Mathematical Snapshots, one can read about the taxonomy of liverworts
(Hepaticae) in the Beskidy Mountains. The dendrite corresponding to the
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frequency of occurrence of different liverwort species was found to be related
to the type of forest – which was an interesting discovery (Fig. 11).

A characteristic feature of the work of the Seminar was tackling of every
problem, even the most unusual ones. At a meeting in January 1952, Julian
Perkal announced that he had made a dendrite of folk songs for Professor
Czekanowski’s daughter (quote from the carefully kept minutes of the Seminar).
The classification of folk songs using the method of Wrocław taxonomy
became one of the important research tools for Anna Czekanowska-Kuklińska,
a professor at the University of Warsaw (d. 2021) and the head of the
Ethnomusicology Department she established.

In 1953, Stefan Zubrzycki published a work [5] using the Wrocław taxonomy,
which answered astronomer Włodzimierz Zonn’s question of whether stars
form non-random constellations (referred to by the authors as "chains") or
are randomly distributed on the celestial sphere. He showed that they are
randomly arranged, confirming that constellations are only a mnemonic method
of remembering the position of stars.

Julian Perkal ends his work on taxonomy (op. cit.) with a warning that "...one
can construct a machine for making dendrites. This creates a danger of a
mechanical approach to natural objects and of gyrating false sometimes natural
bills with mathematical methods." It is worth remembering this.
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Edited by Dominik BUREK

Problems
M 1750. Can the numbers from 1 to 20232 be placed in the squares of a
2023 × 2023 board in such a way that for any choice of a row and a column,
we can find three numbers on them, where one of the numbers is the product of
the other two?
Solution on page 2

M 1751. Let O be the circumcenter of triangle ABC. Points X and Y on side
BC are such that AX = BX and AY = CY . Prove that the circumcircle of
triangle AXY passes through the circumcenters of triangles AOB and AOC.

CB XY

A

O Solution on page 8

M 1752. Let x1, . . . , xn ∈ [0, 1]. Prove that
(1 − x1x2 + x2

1) · (1 − x2x3 + x2
2) · . . . · (1 − xn−1xn + x2

n−1) · (1 − xnx1 + x2
n) ⩾ 1.

Solution on page 4

Edited by Andrzej MAJHOFER

F 1075. An eclipsing binary star system with radii r1 and r2 is observed
from Earth at an angle α to the plane of the stars’ mutual orbit. What is the
relation between the angle α, radii r1 and r2, and the diameter d of the orbit?
We assume that the orbit is circular.
Solution on page 7

F 1076. On one of the plates of a flat capacitor with capacitance C, a charge
Q1 is placed, and on the other plate, a charge Q2 is placed. What is the
potential difference between the plates?
Hint: As usual in problems of this type, we neglect boundary effects.
Solution on page 7
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Delta’s Problem League
Edited by Elżbieta ZAWISTOWSKAClub 44 F
Solutions to problems from 3/2023
Let us recall problem statements:

754. The plates of a parallel plate capacitor with capacitance C are charged to potentials φ
and (−φ) relative to the ground. Each of the plates forms a capacitor with the ground, with
capacitance C1. Find the ratio of the electric field intensities between the plates of the capacitor
with capacitance C initially and after grounding one of the plates.

755. A closed container is completely filled with water. Just above the bottom of the container,
there is an air bubble. How will the pressure at the bottom change when the bubble rises to the
surface?

754. The equivalent system to the one described in the problem is shown in

q −q

C

−q1 q1

C1

−q1 q1

C1

0 0
I II
φ −φ

Rys. 1

q′ −q′

C

−q′
1 q′

1

C1

0
I II

φ1 0

Rys. 2

The rules of Club 44 F/M can be found
on the webpage deltami.edu.pl (in Polish)

Figure 1. A capacitor with capacitance C is charged with a charge of q = 2φC,
and the charges on the plates of capacitors with capacitances C1 are q1 = φC1.
The total charge on the left plate is given by
(1) Q = q + q1 = (2C + C1)φ.

After grounding the right plate, the equivalent system is shown in Figure 2. The
charge on the plates of the capacitor C is q′ = φ1C, where φ1 represents the
potential of the ungrounded plate. The charge on the capacitor with capacitance
C1 is q′

1 = φ1C1, and the total charge on the left plate is
(2) Q′ = q′ + q′

1 = φ(C + C1) = Q.

Taking into account equation (1), we obtain

φ1 = φ(2C + C1)
C + C1

.

The electric field intensity between the capacitor plates is the ratio of the
voltage to the distance between them. Therefore, the desired ratio of these
intensities is E

E1
= 2φ

φ1
= 2(C + C1)

2C + C1
.

755. In the initial state, the air pressure inside the bubble is the same as the
pressure of the water at the bottom of the container. The pressure difference
between the bottom of the container and the top is given by ∆p = ρgh, where
ρ is the density of water and h is the height of the container. During the ascent
of the bubble, its volume remains unchanged because the liquid is practically
incompressible. Therefore, the air pressure inside the bubble also remains
constant. When the bubble reaches the top of the container, the pressure of
the water under the surface is equal to the initial pressure at the bottom, so the
pressure at the bottom has increased by ∆p.

Edited by Marcin E. KUCZMAClub 44 M
Solutions to problems from 3/2023
Let us recall problem statements:

857. Find all pairs of positive integers x, y such that x2 − 4y and y2 − 4x are squares of integers.

858. An equilateral triangle ABC of sidelength 1 and a segment DE of length 1 lie in the 3-space so
that the segment has a point in common with the triangle. Show that one of the points A, B, C, D, E
lies at a distance not exceeding 1 from each one of the other four points.

Problem 858 proposed by Michal Adamaszak of Copehagen.

857. Investigated are solutions of the system of equations
(1) x2 = a2 + 4y, y2 = b2 + 4x

in integers x, y ⩾ 1, a, b ⩾ 0. Obviously, x and a must be of equal parity; (and
likewise y and b).
By symmetry it will suffice to consider x ⩾ y. Then x2 = a2 + 4y ⩽ a2 + 4x, i.e.
(2) x2 − 4x − a2 ⩽ 0.

The first equation from (1) shows that x2 ⩾ a2 + 4,
which (combined with the quadratic inequality (2))
yields the two-sided estimate

(3)
√

a2 + 4 ⩽ x ⩽ 2 +
√

a2 + 4.

It is easily seen that the number a + 2 lies in the interval[√
a2 + 4, 2 +

√
a2 + 4

]
(of length 2). If a ⩾ 1, this is the

only integer of the same parity as a (in this interval);
so x = a + 2. The system (1) now forces y = a + 1 and
(a + 1)2 = b2 + 4(a + 2). Rewrite the last equation as
(a − 1)2 = b2 + 8; i.e.,

(a − 1 − b)(a − 1 + b) = 8,

with the unique solution (in integers) a = 4, b = 1. Hence

20

http://deltami.edu.pl


Delta’s Problem League
x = 6, y = 5. The quadruple (a, b, x, y) = (4, 1, 6, 5)
satisfies the original system (1).
If, however, a = 0, the two-sided inequality (3) is fulfilled
by two even integers x = 2 and x = 4. Plugging these
into (1), the first of these two values yields contradiction,
while the second one results in (a, b, x, y) = (0, 0, 4, 4),
which is a solution.
Taking symmetry into account (hence dismissing x ⩾ y),
we obtain the following pairs (x, y): (4, 4), (6, 5) and (5, 6).
858. This matrix can reveal the combinatorial nature of
the problem: [

i(A, D) i(B, D) i(C, D)
i(A, E) i(B, E) i(C, E)

]
where

i(X, Y ) =
{

0 when XY ⩽ 1
1 when XY > 1

(XY is the length of the segment with endpoints X, Y ).

Since AB = AC = BC = DE = 1, the problem comes
down to showing that at least one row or one column of
this matrix has only zero entries. Suppose this is not the
case. Then the following pattern appears in the matrix
(up to a possible permutation of the symbols A, B, C
and/or D, E, which does not influence the conditions
of the problem):

[
1 1

1
]
; in terms of geometry (with

notation as above):
AD > 1, BD > 1, CE > 1;

i.e.
AD > AC, BD > BC, CE > DE.

Let π be the perpendicular bisector plane of the
segment CD. These inequalities imply that the points
A and B lie on the same side of π as C, while E lies on
the same side of π as D does (and no one of those points
lies on π). Therefore π separates the triangle ABC from
the segment DE, contradicting the condition that they
meet. The result follows.

Are these distributed uniformly?
. . . that is on the V/Vmax method

Radosław POLESKI* *Astronomical Observatory, University of Warsaw (rpoleski@astrouw.edu.pl)

In the XXI century, astronomers are obtaining huge
amounts of observations with various level of specificity.
Extracting knowledge from this cosmos of data
obviously requires statistical analysis. Such analysis
can be of different kinds: from extracting brightness
and positions of objects from an image, through joint
analysis of multiple observations in order to find a
period of some phenomenon (e.g., eclipses in a stellar
binary system), to analysis of data from various sources
in order to determine parameters of a specific object
(e.g., what is the distance to the Galactic center or what
is the fraction of mass in the Universe that consists of
barions).
Astronomy is significantly different from physics with
respect to how the data to be analyzed are obtained:
astronomy is based on observations of phenomena that
we have no control of, whereas physics is mostly based
on experiments performed (and hence controlled) by
the scientist. This nature of astronomical observations
poses a severe difficulty – sometimes increasing the
sample of objects under study is extremely expensive
and may require time that is longer than the expected
lifetime of the researcher. Hence, astronomers often face
incomplete samples of objects, even though they very
much would like it to be otherwise. There are other
obstacles, e.g., information about objects studied may
come from observations taken under different conditions,
epochs, etc. These subtle differences have to be taken
into account during the statistical analysis, which is not
an easy task.
In this article, I would like to present a statistical
method that is typical for astronomy and bears an

exotic name “V/Vmax.” It was designed in the late 60s
in order to tackle the following issue: we have a catalog
of quasars with known brightness and redshift and we
would like to know if quasars are distributed uniformly
in space.
Quasar (from “quasi-stellar object”) is a type of active galaxy that
emits extremely bright radiation.

Note that for the most luminous quasars, the sample
can be considered complete for very large distances,
whereas for the less luminous quasars the sample is
complete for smaller distances. At the first “glance”
the quasar space density may seem to be getting lower
with increasing distance from Earth due to different
luminosities. However, this may be an artifact of higher
overall completeness for smaller distances (compare
Fig. 1 and Fig. 2).

Fig. 1. Illustration of 150 quasars
observed by a 2D astronomer in a
2D Universe. These quasars seem
to show concentration around
Earth (marked by the ⊕ symbol).

Fig. 2. Illustration of the same
quasars as in Fig. 1 divided
into two groups with different
absolute magnitudes. Quasars
from each group are uniformly
placed in the area in which they
can be seen.
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Let us start with basics and assume that all quasars
have the same absolute brightness (i.e., they are equally
bright when observed at a distance of 10 parsecs). If
all quasars are uniformly distributed in space, then
the observed quasars are uniformly distributed in
the part of space, a ball, in which we can see them
(see black points in Fig. 2). The volume of this ball
is labeled Vmax. For each quasar K we determine the

distance and calculate the volume of the ball VK with
radius equal to that distance. For quasars uniformly
distributed in space, the distribution of V/Vmax values
should be uniform in [0, 1] interval (Fig. 3), hence, the
mean of V/Vmax should be approximately equal to 1/2.
If the distribution of V/Vmax does not satisfy these
conditions, then we can reject the hypothesis of uniform
distribution of quasars in space.

What about quasars with different absolute brightness (i.e. as with real
quasars)? First, let us assume (for simplicity) that for each quasar, the absolute
brightness has one of the two values (like in Fig. 1 and 2). As already noted, it
will affect the sample of observed quasars because the more luminous quasars
will be seen from larger distances than the less luminous ones. If we use the
same Vmax value for each quasar, then we will get a histogram that is similar to
Fig. 4, which is significantly different from the one in Fig. 3. We have to modify
our calculations and determine the Vmax value separately for each quasar, based
on the absolute brightness (labeled Vmax,K for quasar K). Nonetheless, if all
quasars are distributed uniformly in space, then for each quasar the value of
VK/Vmax,K can be treated as randomly drawn from [0, 1] interval, independently
from other quasars. In other words, the distribution of VK/Vmax,K should still
be uniform in [0, 1] interval (see Fig. 4 and 5) and its mean should be close to 1/2.
These conditions are fulfilled both by all quasars in Fig. 2, as well as only the
black ones and only the colored ones.

Now we are ready for a generalization – each quasar has different absolute
brightness. For each quasar we can calculate corresponding VK and Vmax,K .
Once more we expect that for a uniform quasar distribution the V/Vmax
distribution will be uniform in [0, 1] range and with mean close to 1/2. If we
have observational data, then it is enough to calculate V/Vmax, check if the
distribution is consistent with expectations and we know whether or not quasars
are uniformly distributed!
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Fig. 3. Histogram of V/Vmax for “black
quasars” from Fig. 2 assuming fixed value
of V/Vmax. The height of each bar
corresponds to the number of quasars
with V/Vmax value in a range defined by
the base of the bar.
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Fig. 4. Histogram of V/Vmax for all
quasars from Fig. 2 assuming fixed value
of Vmax.

0   .0 0   .2 0   .4 0   .6 0   .8 1   .0

0
5

1
0

15

Fig. 5. Histogram of V/Vmax for all
quasars from Fig. 2 with Vmax estimated
for each quasar separately.

The V/Vmax method has been further developed in various directions. For
Curious Readers (that already have some familiarity with these matters) I would
like to briefly present an extension that is most important in my opinion. It is
possible to analyze how parameters of populations change with time. Let us
imagine the Universe at the age corresponding to a redshift z. Let ρ(z) be the
ratio of volume density of studied objects then and now (i.e., z = 0). Instead of
considering volume V we consider generalized volume:

V ′(z) =
z∫

0

ρ(z′)dV (z′),

where V (z) is volume in co-moving coordinates and is calculated based on the
assumed cosmological model. For each quasar we know its redshift zK , hence,
we can calculate the corresponding V ′

K(zK) and V ′
max,K(zK). If we assume that

quasars are distributed uniformly and we assume ρ(z) function that is close
to the true one, then the distribution of V ′/V ′

max should be. . . (I do not think
that I need to repeat myself). How we can know what ρ(z) we should assume?
The easiest approach is to check many different possibilities, for each of them
calculate V ′/V ′

max, and at the end select those that give the results expected.

It is worth noting that the V/Vmax method and its variants are still used in
scientific papers. For example, a few years ago this method was used for a
completely different problem: studying exoplanet frequency f(q) as a function
of star-planet mass ratio q for very small values of q, i.e., for cases for which our
knowledge is rather poor ([1], [2]). The problem was how to include planets

[1] Udalski et al.
OGLE-2017-BLG-1434Lb: Eighth
q < 1 × 10−4 Mass-Ratio Microlens
Planet Confirms Turnover in Planet
Mass-Ratio Function. Acta
Astronomica 68.1 (2018): 1-42.

[2] Jung et al. KMT-2017-BLG-0165Lb:
A Super-Neptune-mass Planet
Orbiting a Sun-like Host Star. The
Astronomical Journal 157.2 (2019):
72.

found in data collected in heterogeneous way. Instead of ρ(z), the searched
function was f(q) and instead of V (z) researchers used probability of finding
in given system a planet with a different mass ratio. Detailed description of
these studies and their results is a topic for a separate article. . .
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Straight from Heaven: Wooden clock
When high-energy cosmic radiation collides with the upper layers of the Earth’s
atmosphere, some collisions lead to the formation of neutrons, leading to the
neutron-proton n−p reaction, which is the conversion of nitrogen nuclei 14

7 N into
radioactive carbon-14, 14

6 C: 14
7 N + n → 14

6 C + p. Carbon-14 falls to the Earth’s
surface, taking part in the normal biochemistry of living organisms, including
becoming bound during tree growth.

Archaeologists use the fact that the
radioactive element is present in studied
samples to determine their age. Once
produced, carbon-14 turns back into
nitrogen, with a half-decay time of about
5750 years. Living organisms maintain
roughly constant levels of radioactive
elements due to continuous uptake and
excretion of matter, while a dead
organism contains a certain initial
amount of carbon-14, which becomes less
and less with time.

By examining the wood, and in particular the differences in carbon-14 content
in individual annual growth rings (wood grain), it is possible to determine the
initial amount of radioactive material and therefore study the evolution of the

amount of cosmic radiation in the past dating back as
far as thousands of years. The carbon-14 content also
depends on other factors, such as the magnetic field
of the Earth and the Sun, which acts as a shield for
the Earth’s surface against cosmic radiation coming
from outside the Solar system (more particles reach
Earth when these magnetic fields are weaker and fewer
when they are stronger). Changes in carbon-14 levels
in growth rings store a history of changes in Earth’s
magnetization as well as the 11-year cycle of the solar
dynamo, which is related to the solar magnetic field.

The wood, however, contains the data that we cannot
explain. In 2012, a Japanese physicist Fusa Miyake
discovered a significant jump in the carbon-14 content
of tree rings dating back to the year 774. The difference
was so large that it must have been caused by cosmic
radiation many times larger than average. Subsequent
“Miyake events” were in the years 993 and 663 BCE,
as well as even earlier events of 5259, 5410 and 7176
BCE. The well-located events in the wood (and in
time) make it possible to precisely date specific events
to the exact year, e.g., the event of 993 allowed to
pinpoint the timing of the the establishment of the first
European settlement in America, a Viking village in
New Fundland, to the year 1021.

How does such massive and short-lived radiation
occur? Among the “suspects” are nearby supernovae,
gamma-ray bursts, emission from magnetized neutron

stars, and even comets. Currently, the best explanation
is that Miyake events are associated with solar
superstorms. These (hypothetical) eruptions from the
Sun are 50-100 times more energetic than the largest
recorded in the modern era: the solar storm observed by
Richard C. Carrington and Richard Hodgson in 1859.

In a paper by Q. Zhang and colleagues, the authors
analyse available material from the tree rings finding
evidence that events can occur at any moment of the
Sun’s 11-year activity cycle (which we wrote about
in e.g. ∆1

21). On the other hand, solar flares tend
to occur near the maximum of the cycle. Several of
the recorded spikes in of radioactivity appear to last
longer than would be suggested by a model of a single
solar superstorm. This suggests that these events
can sometimes last longer than a year, which is not
expected for a single giant solar flare, i.e., that we
would be dealing with a long-lasting solar superstorm
solar weather.

Such an event happening today would destroy power
grids, telecommunications and most satellites. If they
occur randomly, for example, once every thousand
years, there is about a 1% chance per decade, which
is a non-negligible probability.

Michał BEJGER
Nicolaus Copernicus Astronomical Center of

the Polish Academy of Sciences,
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Ferrara, Włochy

“Modelling cosmic radiation events in the tree-ring radiocarbon record”, Qingyuan Zhang i inni, Proc. R. Soc. A. 478 2022.0497, 2022.

The Night Sky in July
Throughout the month, the Sun will lower its altitude
by over 4.5◦, reducing its time above the horizon in
central Poland by over an hour. On July 24th, the Sun
will cross +20◦ declination and thus the period of the
longest days and shortest nights will end. As every year
at the beginning of July, the Earth is at the aphelium
of its orbit, which means that the Sun has the smallest
visible disc in the year. Therefore, it is easier for it to
be covered by the Moon during a potential eclipse – and
such eclipses also can last longer.

In July, the solar system’s brightest planets are not
well visible on the sky. Mercury will begin the month
with an upper conjunction with the Sun and will move
toward maximum eastern elongation, which it will

reach in the first ten days of August, moving away then
by 27◦ from the Sun. Unfortunately, at this time of
year the ecliptic is tilted unfavourably to the horizon,
making the planet set less than an hour after the Sun,
and it is invisible from high latitudes. Notably, with
each successive day the planet’s brightness lowers, from
−0.4m on July 19th to +0.1m on July 31st. A pity,
because on July 28th the planet will pass less than 20′

from Regulus, the brightest star of Leo constellation.

Observational conditions in July for Venus are even
worse. The second planet from the Sun, after June’s
maximum elongation, is rapidly moving toward
August’s lower conjunction with the Sun. This means
that the planet is rapidly approaching us, while
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increasing the size of the disc and decreasing the
phase. At the beginning of July, Venus will present a
disc of brightness −4.4m, diameter 34′′ and phase of
31%. On the last day of the month, the corresponding
magnitude, diameter and phase will be: −4.2m, 53′′

and 5%. Unfortunately, the planet will dive several
degrees below the weakly inclined ecliptic in the process,
disappearing into the evening aurora at the end of
the month. The disc of Venus in July is therefore an
attractive observational target for owners of binoculars
and telescopes, however not for those residing far north
of the equator.
In early July after dusk, you can also try to spot Mars.
The Red Planet originally travels less than 4◦ from
Venus, but then Mars will travel further southeast
and Venus will turn back toward the Sun, so by July
20th the distance on the sky between the planets will
more than double. On July 10th, Mars will pass the
aforementioned Regulus at a distance of just over 0.5◦.
Mars is the most difficult to see through the evening
aurora, as it is already far from Earth and shines with
a brightness of +1.7m, so not much greater than the
nearby brightest star Leo.
All of these planets in the last ten days of the month
will be visited by the Moon in the waxing crescent
phase. The new Moon falls on July 17th and in the
following days it will move to the evening sky, but will
also suffer from the low ecliptic. This situation will
be somewhat improved by the fact that it will spend
almost all of its time, until the first quarter, which falls
on July 25th, north of the ecliptic. As early as July
18th, it is possible to try to spot the Moon’s very thin
sickle at a dusk, but this is a difficult task, requiring
a very clear atmosphere and a low exposed skyline.
Thirty minutes after sunset, the Moon’s disc in phase of
just 1% will take up a position at a height of 3◦. At the
same time 7% to the left of the Moon will be the planet
Mercury, while another 15% further away – the planet
Venus. In turn, 3.5◦ above Venus will show Regulus, 5◦

from Regulus, at 10 o’clock relative to it will be the
planet Mars. The Moon, Mercury and Venus will set
very quickly, Regulus and Mars a little later. To find
all these celestial bodies, however, binoculars may be
necessary. On July 19th, the Moon in phase will pass
4◦ over Mercury, while 24 hours later, with its phase
increased to 8%, the Silver Globe will pass 3◦ over
Regulus and at the same time 7◦ over Venus. At 6◦

to the left of the Moon will show Mars. On July 21st,
the phase of the lunar disk will grow to 14%, and Mars
should then be sought at a distance of 6◦ at 4 o’clock
relative to the Moon.
After passing the planets, on July 24th and 25th, the
Earth’s natural satellite, in the first quarter, will meet
Spika, the brightest star of Virgo. It is still worth
mentioning the very close encounter between the Moon
and Antares, on July 28. At the time of the Sun’s
setting, the Moon’s disc in phase of 79% will show
0.5◦ from Scorpio’s brightest star. Until the end of
the month, the Moon will remain south of the ecliptic,
wandering low over the horizon. The closer we get to

the end of July, however, the fuller the lunar disk will
become, as the Moon will pass through a full Moon on
the evening of August 1st our time.
The beginning of July will also be influenced by the
light of the Silver Globe’s disc. July’s full moon will
fall on July 3rd in the constellation of Sagittarius.
Before it, on the first two nights of the month, the
Moon will visit Scorpio, shining first 6◦ to the right and
then 8◦ to the left of Antares. On 7th July, presenting
a disc illuminated in 83%, Earth’s natural satellite
will approach at 5◦ from Saturn. The ringed planet
in August will move southwesterly less than 1◦ from
the 5th magnitude double star sigma Aqarii. The
planet’s disk will exceed a diameter of 18′′, shining
with a brightness of +0.7m. Saturn will peak at dawn,
rising to an altitude of over 25◦.
The Silver Globe will meet with Neptune on July 9th,
approaching it at a distance of 5◦. The planet will pass
through opposition to the Sun in September and also
move in retrograde motion. This year Neptune will
trace a loop on the border of the Pisces and Aquarius
constellations, not far from the distinctive, miniature
Ursa Minor-like system of 5th and 6th magnitude
stars, which is formed by the stars 30, 33, 27, 29, 24
and 20 Piscium. In July, Neptune is located about
1◦ north of 24 Psc, shines with a brightness of +7.8m

and around 2 o’clock rises to a height of more than 20◦

above the southeastern horizon.
The Moon will pass through the last quarter on July
10th, and then proceed towards the faintly visible
planets Jupiter and Uranus. On the morning of July
12th, the phase of the lunar disk will drop below 30%
and it will ascend just after midnight 2.5◦ from Jupiter
and at the same time 9◦ west of Uranus. Both planets
in the coming observing season will circle against the
background of the constellation Aries at a distance of a
few degrees from each other and in November both will
pass through opposition to the Sun. For the time being,
they are roughly 10◦ apart and at around 2 o’clock
they rise 15◦ above the eastern part of the sky. Jupiter
shines with brightness of −2.3m, presenting a disc of
diameter 38′′, so there is no trouble with spotting it.
The situation is different for Uranus, whose brightness
is +5.8m and because of its low altitude in the dark sky,
its image depends on the quality of the atmosphere.
The new Moon falls on July 17th in the evening, our
time, and thanks to the fact that its orbit is now almost
maximally tilted north of the ecliptic, its thin crescent
along with the so-called ash light will remain visible
for the next 4 days. On the 13th day of the month,
the Moon’s crescent in phase of 20% will approach the
Pleiades at 3◦, 24 hours later its phase will drop to 13%
and it will pass 8◦ over Aldebaran, while on July 15th,
in phase of 7%, it will pass at a distance of just over 2◦

from El Nath, two bright stars of Taurus. On July 16th
at dawn, the Moon in phase at just 3% will show itself
at a height of 7◦ over 20◦ under Capella.

Ariel MAJCHER
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Markov Chains – part 1
Bartłomiej BZDĘGA Adam Mickiewicz University in Poznań

Let us consider the following problem:55

B+ A+

A− B−

B A

x

y

1 − y

1 − x

1 − x 1 − y

y x

1 2

3 4

5 6

Hintsandsolutions
1.LetS1,S2,...,S5denotethecat’s
presenceathome,kindergarten,garden,field,
andforestrespectively.Letqidenotethe
probabilitythatthecatfinishesitsjourney
inthefield(stateS4),giventhatitstarted
instateSi.Ofcourse,q4=1andq2=0.The
valueofq3isdeterminedbysolvingthe
systemofequations:q1=1

3q3+1
2,

q3=1
4q1+1

4+1
4q5,q5=1

2q3.
2.StateSifori=0,1,2,3,4canbe
identifiedwiththeamountofmoneythe
studenthas,andstateS5istheoneinwhich
thestudenthas5or6złotys,i.e.,enoughto
buyadrink.
3.Inthisproblem,wecanidentifythe
statesasfollows:start,HandT(the
outcomeofthefirsttossandthosefollowing
tails),HH,HT,HHT(Gretel’swin),and
HTT(Hansel’swin).Theprobabilityof
Hanselwinningis1

3.
Funfact.Foreverychoiceofaconfiguration
ofthreeconsecutiveoutcomesresultingin
Hansel’swin,Gretelcanchooseadifferent
configurationthatgivesheranadvantagein
suchagame(RROzważaniaORReszce
iOORle,∆11

15).
4.Letusnumberthechildrenfrom1to7in
theordertheystandinthecircle.LetSibe
thestateinwhichthei-thchildhastheball,
andletS7+ibethestateinwhichthei-th
childtakestheballhome.Assumingthatthe
firstchildcamewiththeball,theinitial
stateisS1,andweareinterestedinq8.
Calculationsaresignificantlysimplifiedby
theequalitiesq2=q7,q3=q6,andq4=q5,
whichfollowfromsymmetry.

Two players, A and B, are playing chess, with A starting. Each move can be either
strong or weak. The first player to respond with a strong move to the opponent’s
weak move wins the game. Player A makes a strong move with probability x and
a weak move with probability 1 − x. Similarly, player B has probabilities y and 1 − y.
We assume that 0 < x < 1 and 0 < y < 1. For which values of x and y are the chances
of winning for A and B equal?

Solution. Note that as long as nobody has won, the situation depends only on the
last move. There are four possibilities: a strong/weak move by player A/B. Let us
denote them by A+, A−, B+, and B−. The moment when player A starts can be
considered separately, but there is no need for that because it is equivalent to the
situation B+. So, we can take B+ as the starting point. Additionally, we include
states A (indicating that A has won) and B (indicating that B has won). The
diagram shows all six situations, with assigned numbers from 1 to 6, and connected
by arrows representing transition probabilities.

We call such an object a finite Markov chain. It is
described by a set of states S1, S2, . . . , Sn and transition
probabilities pi,j for moving from state Si to state Sj in
one step for all i, j ∈ 1, 2, . . . , n. This means that when
in state Si, the chain will transition to state S1 with
probability pi,1, to state S2 with probability pi,2, and so
on. For each i, the equation pi,1 + pi,2 + . . . + pi,n = 1 holds.
States Si from which there are no outgoing transitions
(pi,i = 1) are called absorbing.

We are interested in the probability of player A winning,
which is the probability that the process ends in state
S6, given that it started in state S1. To approach this
problem, let qi denote the probability that the process
ends in state S6, given that it started in state Si. Note

that q6 = 1 and q5 = 0. From state S1, we can transition to
S2 (with probability x) or S3 (with probability 1 − x). This
implies that q1 = xq2 + (1 − x)q3. Similarly, we obtain the
equations:
q2 = yq1 + (1 − y)q4, q3 = (1 − y)q4, q4 = (1 − x)q3 + x.

By solving this system of four equations with variables q1,
q2, q3, q4, we obtain:

1
2 = q1 = x(1−y)

(1−xy)(x+y−xy) ⇐⇒ x−y = xy(1−x)(1−y),

which means that for x and y satisfying the last equality,
both players have an equal chance of winning. Note that it
must hold that x > y, since the right-hand side of the last
equality is positive.

Problems
1. The kitten wanders between the house, kindergarten, garden, field, and forest.

It starts in the garden and always chooses one of the remaining four places.
It always plays in the house and then goes to the field or back to the garden.
After a walk in the forest, the kitten always goes either to the garden or to
the kindergarten. If the kitten reaches the kindergarten, it never leaves from
there (children, you know. . . ). On the field, however, the kitten catches a
mouse and ends its wanderings. Calculate the probability of ending up in the
field. (We assume that the kitten’s choices are random and equally likely.)

2. A student wants to buy their favorite energy drink, which costs 5 złotych.
Unfortunately, the student has only 2 złote. So, they decide to go to a casino
where, with a probability of p, they can win 3 złote for each złoty bet, or lose
the bet with a probability of 1 − p. The student stops playing when they have
enough money to buy the drink or when they run out of money. Depending
on the value of p, determine the chances of the student achieving their goal.
(Note: The author of this column does not endorse energy drinks or gambling
in any way.)

3. Hansel and Gretel toss a fair coin. If the sequence HTT (where H denotes
heads and T denotes tails) appears in three consecutive tosses, Hansel
wins the game. If the sequence HHT appears, Gretel wins. Determine the
probability of Hansel winning.

4. Seven children are standing in a circle, playing with a ball. Each child who
currently has the ball throws it to the child standing immediately to their
left (with probability p < 1

2 ) or to the child standing immediately to their
right (also with probability p), or takes the ball and goes back home (with
probability 1 − 2p). Depending on the value of p, calculate the probability that
the same child who brought the ball home will return with it.
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