
Delta’s Problem League
x = 6, y = 5. The quadruple (a, b, x, y) = (4, 1, 6, 5)
satisfies the original system (1).
If, however, a = 0, the two-sided inequality (3) is fulfilled
by two even integers x = 2 and x = 4. Plugging these
into (1), the first of these two values yields contradiction,
while the second one results in (a, b, x, y) = (0, 0, 4, 4),
which is a solution.
Taking symmetry into account (hence dismissing x ⩾ y),
we obtain the following pairs (x, y): (4, 4), (6, 5) and (5, 6).
858. This matrix can reveal the combinatorial nature of
the problem: [

i(A, D) i(B, D) i(C, D)
i(A, E) i(B, E) i(C, E)

]
where

i(X, Y ) =
{

0 when XY ⩽ 1
1 when XY > 1

(XY is the length of the segment with endpoints X, Y ).

Since AB = AC = BC = DE = 1, the problem comes
down to showing that at least one row or one column of
this matrix has only zero entries. Suppose this is not the
case. Then the following pattern appears in the matrix
(up to a possible permutation of the symbols A, B, C
and/or D, E, which does not influence the conditions
of the problem):

[
1 1

1
]
; in terms of geometry (with

notation as above):
AD > 1, BD > 1, CE > 1;

i.e.
AD > AC, BD > BC, CE > DE.

Let π be the perpendicular bisector plane of the
segment CD. These inequalities imply that the points
A and B lie on the same side of π as C, while E lies on
the same side of π as D does (and no one of those points
lies on π). Therefore π separates the triangle ABC from
the segment DE, contradicting the condition that they
meet. The result follows.
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In the XXI century, astronomers are obtaining huge
amounts of observations with various level of specificity.
Extracting knowledge from this cosmos of data
obviously requires statistical analysis. Such analysis
can be of different kinds: from extracting brightness
and positions of objects from an image, through joint
analysis of multiple observations in order to find a
period of some phenomenon (e.g., eclipses in a stellar
binary system), to analysis of data from various sources
in order to determine parameters of a specific object
(e.g., what is the distance to the Galactic center or what
is the fraction of mass in the Universe that consists of
barions).
Astronomy is significantly different from physics with
respect to how the data to be analyzed are obtained:
astronomy is based on observations of phenomena that
we have no control of, whereas physics is mostly based
on experiments performed (and hence controlled) by
the scientist. This nature of astronomical observations
poses a severe difficulty – sometimes increasing the
sample of objects under study is extremely expensive
and may require time that is longer than the expected
lifetime of the researcher. Hence, astronomers often face
incomplete samples of objects, even though they very
much would like it to be otherwise. There are other
obstacles, e.g., information about objects studied may
come from observations taken under different conditions,
epochs, etc. These subtle differences have to be taken
into account during the statistical analysis, which is not
an easy task.
In this article, I would like to present a statistical
method that is typical for astronomy and bears an

exotic name “V/Vmax.” It was designed in the late 60s
in order to tackle the following issue: we have a catalog
of quasars with known brightness and redshift and we
would like to know if quasars are distributed uniformly
in space.
Quasar (from “quasi-stellar object”) is a type of active galaxy that
emits extremely bright radiation.

Note that for the most luminous quasars, the sample
can be considered complete for very large distances,
whereas for the less luminous quasars the sample is
complete for smaller distances. At the first “glance”
the quasar space density may seem to be getting lower
with increasing distance from Earth due to different
luminosities. However, this may be an artifact of higher
overall completeness for smaller distances (compare
Fig. 1 and Fig. 2).

Fig. 1. Illustration of 150 quasars
observed by a 2D astronomer in a
2D Universe. These quasars seem
to show concentration around
Earth (marked by the ⊕ symbol).

Fig. 2. Illustration of the same
quasars as in Fig. 1 divided
into two groups with different
absolute magnitudes. Quasars
from each group are uniformly
placed in the area in which they
can be seen.
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Let us start with basics and assume that all quasars
have the same absolute brightness (i.e., they are equally
bright when observed at a distance of 10 parsecs). If
all quasars are uniformly distributed in space, then
the observed quasars are uniformly distributed in
the part of space, a ball, in which we can see them
(see black points in Fig. 2). The volume of this ball
is labeled Vmax. For each quasar K we determine the

distance and calculate the volume of the ball VK with
radius equal to that distance. For quasars uniformly
distributed in space, the distribution of V/Vmax values
should be uniform in [0, 1] interval (Fig. 3), hence, the
mean of V/Vmax should be approximately equal to 1/2.
If the distribution of V/Vmax does not satisfy these
conditions, then we can reject the hypothesis of uniform
distribution of quasars in space.

What about quasars with different absolute brightness (i.e. as with real
quasars)? First, let us assume (for simplicity) that for each quasar, the absolute
brightness has one of the two values (like in Fig. 1 and 2). As already noted, it
will affect the sample of observed quasars because the more luminous quasars
will be seen from larger distances than the less luminous ones. If we use the
same Vmax value for each quasar, then we will get a histogram that is similar to
Fig. 4, which is significantly different from the one in Fig. 3. We have to modify
our calculations and determine the Vmax value separately for each quasar, based
on the absolute brightness (labeled Vmax,K for quasar K). Nonetheless, if all
quasars are distributed uniformly in space, then for each quasar the value of
VK/Vmax,K can be treated as randomly drawn from [0, 1] interval, independently
from other quasars. In other words, the distribution of VK/Vmax,K should still
be uniform in [0, 1] interval (see Fig. 4 and 5) and its mean should be close to 1/2.
These conditions are fulfilled both by all quasars in Fig. 2, as well as only the
black ones and only the colored ones.

Now we are ready for a generalization – each quasar has different absolute
brightness. For each quasar we can calculate corresponding VK and Vmax,K .
Once more we expect that for a uniform quasar distribution the V/Vmax
distribution will be uniform in [0, 1] range and with mean close to 1/2. If we
have observational data, then it is enough to calculate V/Vmax, check if the
distribution is consistent with expectations and we know whether or not quasars
are uniformly distributed!
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Fig. 3. Histogram of V/Vmax for “black
quasars” from Fig. 2 assuming fixed value
of V/Vmax. The height of each bar
corresponds to the number of quasars
with V/Vmax value in a range defined by
the base of the bar.
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Fig. 4. Histogram of V/Vmax for all
quasars from Fig. 2 assuming fixed value
of Vmax.
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Fig. 5. Histogram of V/Vmax for all
quasars from Fig. 2 with Vmax estimated
for each quasar separately.

The V/Vmax method has been further developed in various directions. For
Curious Readers (that already have some familiarity with these matters) I would
like to briefly present an extension that is most important in my opinion. It is
possible to analyze how parameters of populations change with time. Let us
imagine the Universe at the age corresponding to a redshift z. Let ρ(z) be the
ratio of volume density of studied objects then and now (i.e., z = 0). Instead of
considering volume V we consider generalized volume:

V ′(z) =
z∫

0

ρ(z′)dV (z′),

where V (z) is volume in co-moving coordinates and is calculated based on the
assumed cosmological model. For each quasar we know its redshift zK , hence,
we can calculate the corresponding V ′

K(zK) and V ′
max,K(zK). If we assume that

quasars are distributed uniformly and we assume ρ(z) function that is close
to the true one, then the distribution of V ′/V ′

max should be. . . (I do not think
that I need to repeat myself). How we can know what ρ(z) we should assume?
The easiest approach is to check many different possibilities, for each of them
calculate V ′/V ′

max, and at the end select those that give the results expected.

It is worth noting that the V/Vmax method and its variants are still used in
scientific papers. For example, a few years ago this method was used for a
completely different problem: studying exoplanet frequency f(q) as a function
of star-planet mass ratio q for very small values of q, i.e., for cases for which our
knowledge is rather poor ([1], [2]). The problem was how to include planets
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found in data collected in heterogeneous way. Instead of ρ(z), the searched
function was f(q) and instead of V (z) researchers used probability of finding
in given system a planet with a different mass ratio. Detailed description of
these studies and their results is a topic for a separate article. . .
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