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In 1950, one of the autumn meetings of the Seminar on Applied Mathematics

The full name is Seminar on Applied
Mathematics, General Section of the
Department of Applied Mathematics of
the State Mathematical Institute [1].

in Wrocław was dedicated to the Ngandong skulls. Anthropologists expected

The Ngandong skulls are a group of
fossilized human skulls discovered in 1931
in the Solo River valley on the island of
Java, Indonesia. These skulls are dated to
approximately 100-200 thousands years
ago and are considered to be remains of
hominids of the species Homo erectus.

mathematicians to order these skulls chronologically based on Czekanowski
tables graciously sent to us by Prof. T. Henzel (quotation from the chronicle of

Jan Czekanowski (1882–1965) was an
anthropologist and ethnographer. He
studied anthropology, anatomy,
ethnography, and mathematics at the
University of Zurich. He participated in
the Seminar in Wrocław (four times
according to the Seminar’s chronicle).

the Seminar).

Order, understood as linear, is expected in many fields. Various rankings
are created (for schools, universities, political support). It is hard to imagine
sports events without rankings based on measured time, distance or points
(pentathlon). Indexes are constructed to compare objects that are often
difficult to compare. In economics, stock market states are assessed by stock
market indices (e.g. Dow Jones, WIG), and the price level is assessed by the
inflation index. The health status of a population is assessed by the average life
expectancy or infant mortality rate. Comparison methods based on rankings and
indices involve assigning a number to objects. And as we know, numbers can
easily be ordered.

It is more difficult when an object can be described by a set of many numbers,
and even more challenging when assignings numbers to it is hard. Such a
problem arises when ordering shells with various patterns found on an ancient
landfill (this is the so-called seriation problem in archaeology). Anthropologists
turned to mathematicians with a similar problem, ordering the Ngandong skulls.

Czekanowski tables, which were available to Professor Steinhaus’s team
(Kazimierz Florek, Józef Łukaszewicz, Julian Perkal, and Stefan Zubrzycki),
contained information on the degree of differentiation of each pair of skulls. This
degree was expressed by the Euclidean distance in a seven-dimensional space of
parameters representing the lengths of characteristic segments on the skull.

In general, such a table can be treated as a discrepancy function. This is any
function d(x, y) defined on pairs of elements from a given set X, which satisfies
the conditions:

d(x, y) ⩾ 0, d(x, y) = d(y, x) and d(x, y) = 0 ⇔ x = y,

A special case of a discrepancy function is a distance functiona metric. A metric
is a discrepancy function that also satisfies the triangle inequality: d(x, z) ⩽
d(x, y) + d(y, z) for all x, y, z.

Example 1. Vases. Four vases with decorations were discovered. Each vase is•□
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treated as a set of ornaments painted on it. The Kulczyński discrepancy function
can be used as the discrepancy function, defined for two sets of ornaments R
and S by the formula

Stanisław Kulczyński (1895-1975),
zoologist, arachnologist, mountaineer.
Rector of universities in Lviv and
Wrocław.

d (R, S) = 1 − 1
2

(
|R ∩ S|

|R|
+ |R ∩ S|

|S|

)
.

It can be easily verified that such a function is indeed a discrepancy function.
It is also quite intuitive, since 1

2
( |R∩S|

|R| + |R∩S|
|S|

)
is the arithmetic mean of the

fractions of common elements of R and S, contained in the set R and contained
in the set S.

The resulting discrepancy matrix is presented in the margin. Note that the

A B C D

A 0 1⁄3 1⁄8 7⁄12

B 1⁄3 0 3⁄8 1

C 1⁄8 3⁄8 0 5⁄8

D 7⁄12 1 5⁄8 0

Kulczyński discrepancy matrix.

Kulczynski function is not a metric, since d(B, D) = 1 > 11
12 = d(B, A) + d(A, D).

Discrepancy function and linear order. How to introduce an order
among objects for which we have a discrepancy matrix? Let us first consider
a particular case. Assume that the objects are points distributed on the real line,
and we take the discrepancy function to be the distance between them. Can we
reconstruct the ordering of the points on the line from the discrepancy matrix
alone? Yes, we can – we just need to choose an ordering that minimizes the sum
of distances between consecutive points.
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It will be convenient for us to represent objects O1, O2, . . . , On with
discrepancies dij = d (Oi, Oj) by an undirected complete graph G with n vertices
O1, O2, . . . , On, whose edge OiOj has weight dij . An example of such graph
is given in Fig. 2. We define the length of the path Oi1Oi2 . . . Oin

as the sum
di1i2 + di2i3 + . . . + di(n−1)in

.
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Fig. 2. Graph with Kulczyński
discrepancies (multiplied by 24) and a
path ADBC of length 47.

Previous observations suggest that an order of objects O1, . . . , On may be
determined by the path in graph G of minimum length that passes through
all its vertices (an optimal path).
Example 2. Five capitals. The table below shows the road distances (in
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Fig. 3. Optimal path BCAD in a graph
with weights.

kilometers) between Amsterdam, Berlin, Paris, Rome, and Warsaw.
A B P R W

A 0 650 510 1650 1140

B 650 0 1040 1460 570

P 510 1040 0 1430 1550

R 1650 1460 1430 0 1730

W 1140 570 1550 1730 0

Out of 60 possible paths, the shortest one goes from Warsaw through Berlin,
Amsterdam, Paris, and all the way to Rome, and has the length of 3160 km.
Dendrites. Linear ordering is often insufficient and even inadequate. Let us
quote here Julian Perkal’s observation: As I noticed, linear ordering is often
unnatural in many cases, for example, a genealogical line often branches out. [2]
The structure that allows a nearly linear ordering of the vertices of a graph
is a dendrite, more commonly known as a tree – for historical reasons, we
will use the former term here. A dendrite is a graph without cycles, which is
also connected. These two conditions together mean that any two vertices are
connected by a uniquely determined path (Fig. 4). Any path itself is also a
special case of a dendrite.

Fig. 4
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Fig. 5. Optimal dendrite for the problem
of 4 weights. Its length (25) is smaller
than the length of the optimal path
BCAD (26).

The length of a dendrite is defined as the sum of the weights of its edges.
Inspired by previous observations, we assume that a dendrite of minimum length
(an optimal dendrite) reproduces the order of n vertices of the graph in the best
way (Fig. 5).
Wrocław taxonomy. In the example with weights, it was easy to identify
the optimal dendrite. As the number of vertices in the graph increases, the
question arises about computing it in an algorithmic way. In computer science,
this problem is classical and known as the minimum spanning tree problem.
According to [3], the earliest published solution to this problem (1926) comes
from the Czech mathematician Otakar Borůvka, who was dealing with it in the
context of developing an optimal electrical network in Moravia. The classical
algorithms, known to participants of Olympiads in informatics, are Kruskal’s
and Prim’s algorithms that were published in 1956 and 1957, respectively.
It seems that mathematicians from Wrocław were the first to address this
problem in the context of methods of ordering and classifying (i.e. taxonomy)
in anthropology, biology, or linguistics. Their method, published in 1951 ([4]),
is basically Borůvka’s algorithm (of which they were unaware) and is called the
Wrocław taxonomy in Polish statistical literature.
As part of this work, the first step towards the general construction of an
optimal dendrite was taken in 1949 by Kazimierz Florek. He noted that any
optimal dendrite should contain segments connecting the nearest objects – that
is, those connecting an object with its nearest neighbor. Such segments are
called connections of order I.
In the example with the vases, this procedure solves the problem: connections
of order I form a dendrite. However, this is not always the case. Connections
of order I for 5 capitals form a disconnected subgraph, shown in the margin.
Notice, however, that in the graph of connections of order I, cycles cannot occur
– such a graph is called a forest, and it naturally breaks down into dendrites.
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In 1950, the creators of taxonomy proposed an optimal dendrite construction,
which is an iterative version of Florek’s idea:

Method W
1. Build connections of order I for a given graph G. If they form a dendrite,
the construction is finished. If not, proceed to step 2.

2. Create a new graph G1. The vertices of graph G1 are sub-dendrites
formed from the connections of order I of graph G. The discrepancy
between sub-dendrites A and B is the discrepancy of the nearest neighbors:
d(A, B) := min{d(P, Q) : P ∈ A, Q ∈ B}. Create connections of order I for
graph G1 (these are connections of order II for G). If they form a dendrite,
the construction is finished. If not, repeat step 2 for graph G1.

3. In this way, we create consecutive graphs G1, G2, G3, . . . and for each of
them, connections of the next order. These iterations must end because the
number of vertices in subsequent graphs Gi decreases.

4. The construction of the final dendrite ends by connecting dendrites
of successive orders with edges between objects that realize the nearest
neighbor discrepancy.

Let us see how method W works for the example of 5 capitals. Connections of
order I form sub-dendrites O1 = {A, P, R} and O2 = {B, W}. Graph G1 has
vertices O1 and O2. The minimum distance from B to the set of points {A, P, R}
is 650, and the minimum distance from W to {A, P, R} is 1140 km. Therefore,
the discrepancy of the nearest neighbor between O1 and O2 is equal to 650 km,
which is the distance between Berlin and Amsterdam. G1 with the connection of
order II between these capitals is already a dendrite. This ends the construction,
creating the final optimal dendrite, which turned out to be the path WBAPR.
Proof of optimality of Method W. Without loss of generality, we can
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assume that all nonzero discrepancies in the graph G are different. If necessary,
we can replace the discrepancies dij with d

′

ij = dij + εij (for i < j), where
d

′

ji = d
′

ij and εij > 0 are any chosen distinct numbers smaller than min dij . After
the construction is finished, we need to return to the discrepancies dij .
Let W be the dendrite constructed using method W. Suppose that W is
not an optimal dendrite, so it is different from some optimal dendrite M .
Therefore, there is an edge in W that does not appear in M – let it connect
vertices A and B.
Assume that the edge AB has weight a and order k in the dendrite W .
It connects dendrites U and V of order k − 1 with vertex sets U ′ and
V ′, respectively. The other dendrites of rank k − 1, which we denote by
D1, D2, . . . , Dr, have vertex sets D′

1, D′
2, . . . , D′

r. According to the construction of
W , one of the following two cases holds:
1. a is smaller than each discrepancy between U and D1, . . . , Dr,
2. a is smaller than each discrepancy between V and D1, . . . , Dr.
Without loss of generality, assume that case 1 holds.
In dendrite M , vertices A and B are connected by a path that does not contain
the edge AB, and it must contain an edge CD such that C belongs to U ′ and
D does not. Assume that D belongs to D′

1. The weight of the edge CD is
not smaller than the distance d between dendrites U and D1 in dendrite W .
Moreover, a < d because case 1 holds. Therefore, we can create a new dendrite M ′

by replacing the edge CD in M with the edge AB. The length of M ′ is smaller
than the length of M . This contradicts the assumption that M is an optimal
dendrite.
Grouping. A set of objects might be non-homogenous: shells found in an
ancient landfill or skulls found in a surveyed area may come from several distinct
periods. How to divide the data so that dendrites, corresponding to the division,
indicate significant differences in these groups?
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A family of k dendrites D1, D2, . . . , Dk with sets of vertices Z1, Z2, ..., Zk is a
partition of a given complete graph G with vertices Z when

Z = Z1 ∪ Z2 ∪ . . . ∪ Zk and Zi ∩ Zj = ∅ for i ̸= j

The length of the partition is the sum of the lengths l(Di) of the component
dendrites. The partition is optimal if the length of the partition is minimal.
From this definition, it immediately follows that the components of an optimal
partition must be optimal, so we can assume Di = W (Zi).

Let’s go back to the example of the four vases. They can be divided into two
groups in seven ways:

Z1 {A, B} {A, C} {A, D} {A, B, C} {A, B, D} {A, C, D} {B, C, D}

Z2 {C, D} {B, D} {B, C} {D} {C} {B} {A}

W (Z1) A–B A–C A–D B–A–C B–A–D C–A–D B–C–D

W (Z2) C–D B–D B–C D C B A

l(W (Z1)) + l(W (Z2)) 23 27 23 11 22 17 24

The optimal partition D1 = C–A–B , D2 = D is a subgraph of the dendrite
obtained by the W method (Fig. 5). It turns out that this is always the case.

Theorem. If {W (Z1), W (Z2), ..., W (Zk)} is an optimal partition of the graph G
with vertices Z, then

W (Z1) ∪ W (Z2) ∪ . . . ∪ W (Zk) ⊂ W (Z).
Proof. As before, without loss of generality, we assume that all non-zero
discrepancies are distinct.

Suppose that there exists an edge AB in W (Z1) ∪ W (Z2) ∪ . . . ∪ W (Zk) that
does not belong to W (Z). There exists a path sAB in W (Z) connecting these
vertices.

From the disjointness of Zi, it follows that there exists an r such that the edge
AB belongs to W (Zr). The elements of Zr can be divided into subsets U and
V as follows: U consists of the vertex A and all vertices in Zr connected to A
by a path in the dendrite W (Zr) that does not contain the edge AB; V consists
of the vertex B and all vertices in Zr connected to B by a path in the dendrite
W (Zr) that does not contain the edge AB.

The path sAB must contain an edge CD such that C ∈ U and D /∈ U . Let
d(A, B) = x and d(C, D) = y. The inequality y < x holds; otherwise, replacing
CD with AB in the dendrite W (Z) would decrease its length, which would be a
contradiction.

There are two cases: D ∈ V and D ∈ Zs for s ̸= r.

1. D ∈ V (Fig. 9). In this case, replacing AB with CD in W (Zr) yields a dendrite
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that is not optimal, which is a contradiction.

2. D ∈ Zs for s ≠ r (Fig. 10). We replace the dendrite W (Zr) with the dendrite
W (U) ∪ CD ∪ W (Zs) of length l(W (U)) + y + l(W (Zs)), and the dendrite W (Zs)
with W (V ) of length l(W (V )). The sum of the lengths of all k dendrites after
the change is smaller than the sum of their lengths before the change, which
contradicts the assumption that the partition is optimal.

From the above theorem, we obtain a useful result in the context of finding an
optimal grouping:

Corollary. The optimal partition of a graph G into k subdendrites involves
removing from the dendrite W (Z) the k − 1 edges with the largest discrepancies.

A bit about applications. The Seminar on Applied Mathematics actively
promoted the idea of taxonomy, applying it in various fields. In Steinhaus’s
Mathematical Snapshots, one can read about the taxonomy of liverworts
(Hepaticae) in the Beskidy Mountains. The dendrite corresponding to the
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frequency of occurrence of different liverwort species was found to be related
to the type of forest – which was an interesting discovery (Fig. 11).

A characteristic feature of the work of the Seminar was tackling of every
problem, even the most unusual ones. At a meeting in January 1952, Julian
Perkal announced that he had made a dendrite of folk songs for Professor
Czekanowski’s daughter (quote from the carefully kept minutes of the Seminar).
The classification of folk songs using the method of Wrocław taxonomy
became one of the important research tools for Anna Czekanowska-Kuklińska,
a professor at the University of Warsaw (d. 2021) and the head of the
Ethnomusicology Department she established.

In 1953, Stefan Zubrzycki published a work [5] using the Wrocław taxonomy,
which answered astronomer Włodzimierz Zonn’s question of whether stars
form non-random constellations (referred to by the authors as "chains") or
are randomly distributed on the celestial sphere. He showed that they are
randomly arranged, confirming that constellations are only a mnemonic method
of remembering the position of stars.

Julian Perkal ends his work on taxonomy (op. cit.) with a warning that "...one
can construct a machine for making dendrites. This creates a danger of a
mechanical approach to natural objects and of gyrating false sometimes natural
bills with mathematical methods." It is worth remembering this.
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Edited by Dominik BUREK

Problems
M 1750. Can the numbers from 1 to 20232 be placed in the squares of a
2023 × 2023 board in such a way that for any choice of a row and a column,
we can find three numbers on them, where one of the numbers is the product of
the other two?
Solution on page 2

M 1751. Let O be the circumcenter of triangle ABC. Points X and Y on side
BC are such that AX = BX and AY = CY . Prove that the circumcircle of
triangle AXY passes through the circumcenters of triangles AOB and AOC.

CB XY

A

O Solution on page 8

M 1752. Let x1, . . . , xn ∈ [0, 1]. Prove that
(1 − x1x2 + x2

1) · (1 − x2x3 + x2
2) · . . . · (1 − xn−1xn + x2

n−1) · (1 − xnx1 + x2
n) ⩾ 1.

Solution on page 4

Edited by Andrzej MAJHOFER

F 1075. An eclipsing binary star system with radii r1 and r2 is observed
from Earth at an angle α to the plane of the stars’ mutual orbit. What is the
relation between the angle α, radii r1 and r2, and the diameter d of the orbit?
We assume that the orbit is circular.
Solution on page 7

F 1076. On one of the plates of a flat capacitor with capacitance C, a charge
Q1 is placed, and on the other plate, a charge Q2 is placed. What is the
potential difference between the plates?
Hint: As usual in problems of this type, we neglect boundary effects.
Solution on page 7
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