
Dear Reader,
Data is one of the resources on which modern
civilization is built. Like most resources, it
requires processing before it becomes fully useful.
The intellectual refinery that humanity has
developed to deal with the abundant deposits of
information is broadly termed statistics. Statistics
also serves as a common denominator for the
articles published in this edition of Delta, the
Polish popular science monthly that you are
holding in your hands. In almost 50 years of its
history it has been striving to bring the subject
areas that it covers – mathematics, informatics,
physics and astronomy – closer to its readers.
In a similar way, statistics brings the knowledge
hidden in data closer to researchers and, in turn,
the society.

The creation of this issue is correlated with the 34th
conference “European Meeting of Statisticians” held in
Warsaw from July 3rd to 7th, 2023. The local organization of
the conference is by the Polish Mathematical Society, Warsaw
University of Technology, and the University of Warsaw; the
latter is also a publisher of Delta. The participants have
been given copies of the English version of this edition of
Delta. It is true that participants of this conference hardly
need an additional education in statistics, but we believe
that everyone will find some intellectual stimulation on
these pages, regardless of their scientific background and
experience.

We wish you pleasant reading and, if you are a participant of
the conference, a memorable event.

Editorial Board

Statistics with imprecise data Przemysław GRZEGORZEWSKI*
Statistics might be perceived as an art of making decisions in the presence of* Faculty of Mathematics and Information

Science, Warsaw University of
Technology uncertainty. It delivers tools for describing and explaining reality as well as

for making predictions and verifying hypotheses. For a long time, uncertainty
has been identified with randomness, and consequently, probability has been
perceived as the only well-grounded theory of uncertainty. However, during
the last fifty years, several approaches extending or orthogonal to the classical
probability theory have appeared. A common feature of these new approaches is
an attempt to soften the classical methods so that they can more easily adapt to
the factual nature of the data available and deal with other types of uncertainty,
such as imprecision.

Uncertainty

Randomness Imprecision

It is important to remember that imprecision as a concept itself is not entirely
unambiguous. Quite often the results of an experiment are imprecise due to
inaccuracy of the measuring apparatus or errors made by the persons making
the measurements. Sometimes the desired measurement is so difficult that its
result, as a rule, should be treated as highly uncertain. It may also happen that
the exact value of a variable is intentionally hidden for some confidentiality
reasons. In all these situations data are often recorded as set-valued objects
(e.g. as intervals) containing the exact but unknown values so a set-valued
observation A delivers incomplete information about the point quantity x: we
know only that A contains x but the true value of x remains unknown. Hence
A represents the epistemic state of the subject. But there are also situations
when the experimental data appear as essentially imprecise. A typical case is
the analysis of perceptions collected from a human when there is no objective
value behind (like the taste or mood). Another example refers to objects or
phenomena with an intrinsically gradual representation subject to variability
in nature, with fuzzy or changing boundaries, flexible time intervals or rating
scales, etc. Each such observation represents an objective entity, even if it is
vague, and hence corresponds to ontic imprecision.
A convenient method of mathematical modeling of imprecision was indicated by
Lotfi A. Zadeh (1921–2017) who introduced fuzzy set theory as an extension of
the classical set theory. Zadeh, one of the most outstanding thinkers of the current
time, realized that although we are used to dividing everything into “yes” and “no”
or to black and white, the entire world is in shades of grey. His famous statement
that everything is a matter of degree became the main idea behind fuzzy logic and
its impressive applications. It is worth noting that fuzzy logic is actually not a
“fuzzy” logic, but a logic that describes and tames imprecision.
A fundamental Zadeh’s concept is a fuzzy set. Let U be a universe of discourse.L.A. Zadeh, Fuzzy sets, Information and

Control 8 (1965), 338–353. A fuzzy set A in U is identified with a mapping, called a membership
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function A : U → [0, 1], which assigns to each object x ∈ U a real number in
the interval [0, 1], so that A(x) represents the degree of membership of x into A.
Thus a fuzzy set A may be perceived as a (standard) subset of U × [0, 1]

A = {(x, A(x)) : x ∈ U, A(x) ∈ [0, 1]}.

The interpretation of the membership function is natural: if A(x) = 1 then we

Note that in the set theory functions
f : X → Y are usually defined as sets;
more precisely, subsets of X × Y such that
for all x ∈ X there exists an unique y ∈ Y
satisfying (x, y) ∈ f . In this sense f(x) is
only a notational convention to denote y
for which (x, y) ∈ f . are sure that element x belongs to A, while A(x) = 0 means that x does not

belong to A. In all other cases, i.e. if A(x) ∈ (0, 1), we have a partial membership
(belongingness) to A. It means that if A(x) is close to 1 then the degree of
membership of x in A is high, while if A(x) is close to 0 then the degree of
membership of x in A is low. If A(x) ∈ {0, 1} for all x ∈ U then A is a set in
the classical meaning (each “usual” set is a fuzzy set whose membership function
is its characteristic function).

Another important notion connected with a fuzzy set is the so-called α-cut. For
each α ∈ [0, 1] the α-cut of a fuzzy set A, denoted as Aα, is given by

Aα =
{

{x ∈ U : A(x) ⩾ α} if α ∈ (0, 1],
cl{x ∈ U : A(x) > 0} if α = 0,

where cl stands for the closure (for now on we assume that U is equipped with
such operation). In other words, the α-cut is a “usual” subset of U whose degree
of belonging to A is not less than α. It can be shown that every fuzzy set is
completely characterized by a family of all its α-cuts {Aα}α∈[0,1]. Two α-cuts are
of special interest: A1 known as the core, which contains all values which are
fully compatible with the concept described by A and A0 called the support,
which are compatible to some extent with the concept modeled by A.

An important subfamily of fuzzy sets are fuzzy numbers. We say that A is
a fuzzy number if A : R → [0, 1] such that its α-cuts for each α ∈ [0, 1] are
nonempty closed intervals. An example of a fuzzy number is shown in Fig. 1.

1 A(x)

α

Aα

Fig. 1. A membership function A(x) of a
fuzzy number A. Example. Gamonedo cheese is a kind of blue cheese produced in Asturias

(northern Spain). It experiences a smoking process and later on is left to settle
in natural caves or a dry place. To maintain the quality of the cheese, experts
(tasters) express their subjective perceptions about different characteristics
of the cheese, such as visual parameters (shape, rind, appearance), texture
parameters (hardness and crumbliness), olfactory-gustatory parameters (smell
intensity, smell quality, flavor intensity, flavor quality, and aftertaste) and an
overall impression of the cheese. Recently tasters were asked to express their
subjective perceptions about the quality of the Gamonedo cheese by using
fuzzy numbers. This type of fuzzy number is the most commonly used for fuzzyRamos-Guajardo A.B., et al., Applying

statistical methods with imprecise data
to quality control in cheese
manufacturing, In: Grzegorzewski P.,
et al. (Eds.), Soft Modeling in Industrial
Manufacturing, Springer 2019,
pp. 127–147.

descriptions both because is easy to understand by the tasters and simple in
further processing. Valuation of the different features of each cheese is made
over a graduate scale ranging from 0% (for lowest quality) to 100% (for highest
quality). The 0-level is the set of values considered by a tester as compatible
with his opinion to some extent, i.e., he thinks it is not possible that the quality
is out of this set. The 1-level is the set of values considered as fully compatible
with his opinion. For example, Fig. 2 illustrates a situation of a tester who
believes that a given cheese meets the quality requirements in terms of the
examined feature in 70–80%. At the same time, he is undoubtedly convinced
that the quality requirements are satisfied with not lower than 50% but not
higher than 90%.

Solution to Problem M 1750.
Consider any arrangement of numbers.
Note that the numbers from 1 to 2022
represent at most 2022 rows and 2022
columns. Therefore, there exists a row
and a column that contain only numbers
greater than 2022. The product of any
two of these numbers is at least
2023 · 2024, which is greater than any
number on the board. This means that
there is no arrangement of numbers
satisfying the conditions stated in the
problem.

0

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 2. An exemplary opinion of a taster expressed by a trapezoidal fuzzy set.

As is seen in the figure, both 0-level and 1-level are linearly interpolated to get
the so-called trapezoidal fuzzy set used later to represent this tester’s personal
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valuation. A sample of tester’s opinions modeled with trapezoidal fuzzy sets is
given in Fig. 3.
1

0 10 20 30 40 50 60 70 80 90 100

Fig. 3. A sample of tester’s opinions modeled with trapezoidal fuzzy sets.

More formally, we say, that A is a trapezoidal fuzzy number if its
membership function is given by

(1) A(x) =


x−a1
a2−a1

if a1 ⩽ x < a2,

1 if a2 ⩽ x ⩽ a3,
a4−x
a4−a3

if a3 < x ⩽ a4,

0 otherwise,

where a1, a2, a3, a4 ∈ R such that a1 ⩽ a2 ⩽ a3 ⩽ a4. Thus, since a trapezoidal
fuzzy number (1) is characterized completely by four real numbers, it is often
denoted as A = (a1, a2, a3, a4)T .

Before we take the next step we have to define some basic operations onIt is worth noting that a sum of
trapezoidal fuzzy numbers is also a
trapezoidal fuzzy number, i.e., if
A = (a1, a2, a3, a4)T and
B = (b1, b2, b3, b4)T then

A + B =
= (a1 + b1, a2 + b2, a3 + b3, a4 + b4)T .

fuzzy numbers. Although one can introduce these operations directly on
membership functions it seems that it is easier to do this equivalently as
α-cut-wise operations on intervals. In particular, the sum of two fuzzy numbers
A and B is given by the Minkowski addition of the corresponding α-cuts (see
Fig. 4), i.e. for all α ∈ [0, 1]
(2) (A + B)α =

[
inf Aα + inf Bα, sup Aα + sup Bα

]
.

1 A(x) B(x)

α

Aα Bα

(A + B)(x)

(A + B)α

Fig. 4. Addition of fuzzy numbers A and B.

Similarly, the product of a fuzzy number A by a scalar θ ∈ R is defined by theThe product of a trapezoidal fuzzy
number A = (a1, a2, a3, a4)T by a scalar θ
is a trapezoidal fuzzy number, i.e.

θ · A =
{

(θa1, θa2, θa3, θa4)T if θ ⩾ 0,

(θa4, θa3, θa2, θa1)T if θ < 0.

Minkowski scalar product for intervals (see Fig. 5), i.e. for all α ∈ [0, 1]
(3) (θ ·A)α =

[
min{θ inf Aα, θ sup Aα}, max{θ inf Aα, θ sup Aα}

]
.

1 A(x)

α

Aα

(−1.5·A)(x)

(−1.5·A)α

Fig. 5. The product of a fuzzy number A by a scalar.

Unfortunately, in general, A + (−1·A) ̸= 1{0} (see Fig. 6). Consequently, the
Minkowski-based difference does not satisfy, in general, the addition/subtraction
property that (A + (−1 · B)) + B = A.

A(x)(−1·A)(x)

(
A + (−1·A)

)
(x)

Fig. 6. Problems with subtraction of fuzzy numbers.

3



To overcome some of the problems associated with the lack of a satisfying
difference, especially in constructing tools for statistical reasoning based

Solution to Problem M 1752.
Let us observe that for any M, a, b ∈ [0, 1]
such that M ⩾ a, b, the following
inequality holds:

(M − a)(M − b)(1 − bM) ⩾ 0,

After some transformations, we obtain:
(1 − bM + b

2)(1 − aM + M
2) ⩾ 1 − ab + b

2
.

To prove the inequality for n = 2, it is
sufficient to take a = b = x1 and M = x2
in the above inequality.
Assume that the inequality holds for
some n; we will deduce its validity for
n + 1. Without loss of generality, assume
that xn+1 = max{x1, . . . , xn+1}. Using
the above inequality with b = xn,
M = xn+1, and x1 = a, we obtain:

(1 − xnxn+1 + x
2
n)(1 − xn+1x1 + x

2
n+1) ⩾

⩾ (1 − xnx1 + x
2
n).

Therefore,

n+1∏
cycle

(1 − xixi+1 + x
2
i ) ⩾

⩾

n∏
cycle

(1 − xixi+1 + x
2
i ) ⩾ 1,

where “cycle” denotes the cyclic product.
We complete the proof by invoking the
principle of mathematical induction.

on fuzzy observations, an alternative approach utilizing distances is
often considered. Let us define the following distance between two fuzzy
numbers A and B

(4) D(A, B)=

√√√√√ 1∫
0

[
(inf Aα−inf Bα)2 + (sup Aα−sup Bα)2

]
dα.

Indeed, (4) defines a metric (in the sense explained in details in e.g. Jarosław
Górnicki’s article from Delta 5/2021). It is clear that D(A, B) ⩾ 0 and
D(A, B) = 0 if and only if A = B. Proving that D(A, B) + D(B, C) ⩾ D(A, C)
(triangle inequality) is slightly less trivial and we leave is as an exercise to the
reader.

Suppose, we observe independently two fuzzy random samples x = (x1, . . . , xn)
and y = (y1, . . . , ym) drawn from two populations (each xi and yi is a fuzzy
number). We want to check if there is a significant difference between these two
populations. To this end we measure the distance (4) between the arithmetic
means of these samples. Note that we already know how to compute an
arithmetic mean of fuzzy numbers (which is itself a fuzzy number) as we have
tools of adding them together and multiplying by real numbers. But is a specific
distance between means, like 3.14, large or small? This is where the statistics
come into the picture.

In statistical jargon our goal is to verify the null hypothesis H0 that both
samples come from the same distribution, against the alternative hypothesis that
the population distributions differ. If the null hypothesis holds we expect that
both sample means would not differ too much. On the other hand, a significant
difference between the two sample means may indicate that the samples under
study come from different distributions.

To decide whether the measurement is large enough to conclude as significant
statisticians often use the notion of p-value. In our case it is the probability,
under the assumption that the null hypothesis is true, of getting at least as great
distance between means as the distance observed. Intuitively, if this probability
is low, we have a good reason to reject the null hypothesis. The problem is that
in this case we cannot compute it exactly as the null hypothesis merely says
that the two populations can be treated as one but it does not give us a specific
description of this population! We need to resort to another clever idea.

Let v be the concatenation of the two samples, i.e. vi = xi if 1 ⩽ i ⩽ n and
vi = yi−n if n + 1 ⩽ i ⩽ N , where N = n + m. Now, let v∗ denote a permutation
of the initial dataset v. Then the first n elements of v∗ are assigned to the
first sample x∗ and the remaining m elements to y∗. In other words, it works
like a random assignment of elements into two samples of the size n and m,
respectively. Each permutation corresponds to some relabeling of the combined
dataset v. Please note that if H0 holds, i.e. both samples come from the
same distribution, then we are completely free to exchange the labels x or y
attributed to particular observations – this will not change the randomness
behind them. As a consequence we can estimate the true p-value from the data
by taking a fraction of all possible permutations v∗ that yield a larger distance
between means of x∗ and y∗ that the one observed.

Formally this can be expressed asEquation (5) can be treated as a
definition of the true p-value,
conditioning on the event that our
samples sum up (as sets) to v. This
approach is somewhat standard in
designing so called nonparametric tests,
like runs test, described in details in an
article of the same name in Delta 9/2017.

(5) p-value = 1
N !

∑
v∗

1(T (v∗) ⩾ t0),

where the sum ranges over all possible permutations v∗ of v, T (v∗) is the
distance between means of x∗ and y∗ and t0 is the observed distance between
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means of x and y. The value of 1(condition) is 1 if condition is met and 0
otherwise.

Formula (5) can be further simplified, using the fact that the permutations can
be split into groups of size n!m! each, which give the same means of x∗ and y∗

(those groups are permutations that can be obtained by each other by permuting
first n and last m observations). Even in this case number of summands (which
becomes

(
N
n

)
) grows exponentially with N (given that n/N is kept at fixed

level).

Therefore, instead of considering all possible permutations we consider an
approximate distribution obtained by drawing randomly a large number of
samples (permutations) with replacement.Table 1. Opinions of two experts

concerning the overall impression on the
total of 78 samples of the Gamonedo
cheese, cf. Ramos-Guajardo et al. (2019)
Each entry refers to a different sample.

Expert 1 Expert 2

(65, 75, 85, 85) (50, 50, 63, 75)
(35, 37, 44, 50) (39, 47, 52, 60)
(66, 70, 75, 80) (60, 70, 85, 90)
(70, 74, 80, 84) (50, 56, 64, 74)
(65, 70, 75, 80) (39, 45, 53, 57)
(45, 50, 57, 65) (55, 60, 70, 76)
(60, 66, 70, 75) (50, 50, 57, 67)
(65, 65, 70, 76) (65, 67, 80, 87)
(60, 65, 75, 80) (50, 50, 65, 75)
(55, 60, 66, 70) (50, 55, 64, 70)
(60, 65, 70, 74) (39, 46, 53, 56)
(30, 46, 44, 54) (19, 29, 41, 50)
(60, 65, 75, 75) (40, 47, 52, 56)
(70, 75, 85, 85) (54, 55, 65, 76)
(44, 45, 50, 56) (59, 65, 75, 85)
(51, 56, 64, 70) (50, 52, 57, 60)
(40, 46, 54, 60) (60, 60, 70, 80)
(55, 60, 65, 70) (50, 54, 61, 67)
(80, 85, 90, 94) (40, 46, 50, 50)
(80, 84, 90, 90) (44, 50, 56, 66)
(65, 70, 76, 80) (60, 64, 75, 85)
(75, 80, 86, 90) (54, 56, 64, 75)
(65, 70, 73, 80) (50, 50, 60, 66)
(70, 80, 84, 84) (44, 46, 55, 57)
(55, 64, 70, 70) (59, 63, 74, 80)
(64, 73, 80, 84) (49, 50, 54, 58)
(50, 56, 64, 70) (55, 60, 70, 75)
(55, 55, 60, 70) (44, 47, 53, 60)
(60, 70, 75, 80) (19, 20, 30, 41)
(64, 71, 80, 80) (40, 44, 50, 60)
(50, 50, 55, 65) (50, 50, 59, 66)
(50, 54, 60, 65) (50, 53, 60, 66)
(65, 75, 80, 86) (50, 52, 58, 61)
(50, 55, 60, 66) (60, 65, 72, 80)
(40, 44, 50, 50) (50, 50, 55, 60)
(70, 76, 85, 85) (30, 34, 43, 47)
(44, 50, 53, 60) (19, 25, 36, 46)
(34, 40, 46, 46) (53, 63, 74, 80)
(40, 45, 51, 60)
(84, 90, 95, 95)

Let v∗
1 , v∗

2 , . . . , v∗
K be some random permutations of v (where K is usually not

smaller than 1000). Then the approximate p-value of our test is given by

(6) p-value ≃ 1
K

K∑
k=1

1(T (v∗
k) ⩾ t0).

Example. Now we utilize some data given in Ramos-Guajardo et al. (2019)
to compare the opinions of the two experts about the overall impression of the
Gamonedo cheese. The trapezoidal fuzzy sets corresponding to their opinions
are gathered in Table 1. There we have two observations of independent samples
x = (x1, . . . , xn) and y = (y1, . . . , ym) of sizes n = 40 and m = 38, respectively.
Numbers in parentheses correspond to the notation used to describe trapezoidal
fuzzy numbers, e.g. x1 = (65, 75, 85, 85)T , y1 = (50, 50, 63, 75)T , etc. Our problem
is to check whether there is a general agreement between these two experts. To
reach the goal we verify the following null hypothesis H0 stating there is no
significant difference between experts’ opinions, against that their opinions on
the cheese quality differ.

Simple calculations on data from Table 1 lead to means
x = (57.65, 63.20, 69.18, 73.48)T and y = (47.34, 51.21, 59.87, 66.84)T .

Substituting these results into (4) we obtain a value of our test statistic t0 =
D(x, y) = 7.96. Then, after combining samples and generating K = 1000 random
permutations and following (6) we obtain the approximation of p-value of 0.002.
Its interpretation is shown in Fig. 7, where one can find the histogram of all
sampled differences D(x∗, y∗). Black dot indicates the value t0 of the test
statistic. The barely seen grey area on
the right side of this dot corresponds
to the probability of obtaining the
distance between x∗ and y∗ not
smaller than t0. Therefore, we can
rather confidently reject the null
hypothesis and conclude that there is
no general agreement between experts’
opinions on the overall impression of
the Gamonedo cheese. Fig. 7

The permutation agreement test considered above for two samples containing
imprecise information is just one example of how fuzzy modeling can be
combined with statistical inference. Although initially, some statisticians were
skeptical about attempts to combine both theories, researchers realized that
both statistics and fuzzy set theory should not be regarded as competitive, but
that they can complement each other effectively. Moreover, expanding statistics
with fuzzy sets not only solves some issues but also raises new questions. In
particular, the distinction between the so-called ontic and epistemic sets yields
different definitions of concepts as basic as variance and, consequently, different
inferential tools. It is also worth noting that statisticians have also recognized
fuzzy sets as convenient means for constructing procedures that allow the
weakening of hypotheses or requirements that are excessively rigid.
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